Loading…

Seed and bark extracts of Acacia catechu protects liver from acetaminophen induced hepatotoxicity by modulating oxidative stress, antioxidant enzymes and liver function enzymes in Wistar rat model

In this study we investigated the hepatoprotective effects and possible mechanism of Acacia catechu in acetaminophen (APAP) induced hepatotoxicity using female Wistar rat model. Hepatotoxicity was induced by oral administration of acetaminophen (750 mg/kg body weight) for 24 h. The seed (400 mg/kg b...

Full description

Saved in:
Bibliographic Details
Published in:Biomedicine & pharmacotherapy 2018-12, Vol.108, p.838-844
Main Authors: Lakshmi, Thangavelu, Sri Renukadevi, Balusamy, Senthilkumar, Sivanesan, Haribalan, Perumalsamy, Parameshwari, R, Vijayaraghavan, Rajagopalan, Rajeshkumar, Shanmugam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study we investigated the hepatoprotective effects and possible mechanism of Acacia catechu in acetaminophen (APAP) induced hepatotoxicity using female Wistar rat model. Hepatotoxicity was induced by oral administration of acetaminophen (750 mg/kg body weight) for 24 h. The seed (400 mg/kg body weight) and bark (400 mg/kg body weight) extract’s treated groups exhibited hepatoprotective effects and was compared with well-known clinical anti-dote N-acetylcysteine (NAC). When groups treated with acetaminophen, significant increase of liver weight/body weight ratio, liver function enzymes such as alanine aminotransferase (ALT), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) and decrease of antioxidant enzymes such as glutathione (GSH) and superoxide dismutase (SOD) were observed. The histopathology of APAP treated groups also showed moderate degree of sinusoidal congestion, centrilobular necrosis with polymorph nuclear cells infiltration, marked vacuolations and congestion. However, pretreatment with seed or bark extract groups decreased LPO accumulation, reduced the liver function enzymes and increased antioxidant defense enzymes. Moreover, histopathology of seed extract treated groups showed normal architecture whereas bark extract treated groups exhibited mild degree of vacuolations in the hepatocytes with minimal sinusoidal congestion. Taken together, our study concludes that A. catechu seed extract to be a more promising agent for protecting liver from APAP induced hepatotoxicity.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2018.08.077