Loading…

Protective effects of bee bread on testicular oxidative stress, NF-κB-mediated inflammation, apoptosis and lactate transport decline in obese male rats

[Display omitted] Oxidative stress, chronic inflammation and apoptosis are associated with obesity. Herein, we investigated the potential protective effect of bee bread, a natural bee product, on testicular oxidative stress, inflammation and apoptosis, as well as lactate transport in the testis of h...

Full description

Saved in:
Bibliographic Details
Published in:Biomedicine & pharmacotherapy 2020-11, Vol.131, p.110781, Article 110781
Main Authors: Suleiman, Joseph Bagi, Nna, Victor Udo, Zakaria, Zaida, Othman, Zaidatul Akmal, Eleazu, Chinedum Ogbonnaya, Abu Bakar, Ainul Bahiyah, Ahmad, Azlina, Usman, Umar Zayyanu, Abdul Rahman, Wan Faiziah Wan, Mohamed, Mahaneem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Oxidative stress, chronic inflammation and apoptosis are associated with obesity. Herein, we investigated the potential protective effect of bee bread, a natural bee product, on testicular oxidative stress, inflammation and apoptosis, as well as lactate transport in the testis of high-fat diet (HFD)-induced obese rats. Adult male Sprague-Dawley rats were either fed with normal chow (NC), HFD, HFD + bee bread (0.5 g/kg b.w./day) or HFD + orlistat (10 mg/kg b.w./day) for 12 weeks. Our results show significant decreases in the activities and mRNA expression of antioxidant genes (Nrf2, Sod, Cat and Gpx), with significant increase in pro-inflammatory (Nf-κb, Tnf-α, iNos, Il-1β) and pro-apoptotic (p53, Bax, Bax/Bcl2, Caspase-8, Caspase-9 and Caspase-3) genes in the testis of HFD group relative to the NC group. Furthermore, proliferating cell nuclear antigen (PCNA) was poorly expressed in the testis of the HFD group relative to the NC group. Similarly, the mRNA levels of glucose transporters (Glut1 and Glut3), monocarboxylate transporters (Mct2 and Mct4) and lactate dehydrogenase type C (Ldhc) decreased significantly, with decrease in lactate utilisation. Treatment with bee bread upregulated testicular antioxidant enzymes, downregulated inflammation and apoptosis, and increased PCNA immunoexpression, in addition to improving lactate transport. Taken together, our results suggest that bee bread is a promising natural product with the potential to improve male fertility.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2020.110781