Loading…
Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus
Abstract We previously demonstrated that ginsenoside Rg3 (Rg3 ), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents and NMDA-induced neurotoxicity (Kim, S., Kim, T., Ahn, K., Park, W.K., Nah, S.Y., Rhim, H., 2004. Ginsenoside Rg3 antagonizes NMDA receptors thr...
Saved in:
Published in: | Brain research 2007-03, Vol.1136 (1), p.190-199 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We previously demonstrated that ginsenoside Rg3 (Rg3 ), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents and NMDA-induced neurotoxicity (Kim, S., Kim, T., Ahn, K., Park, W.K., Nah, S.Y., Rhim, H., 2004. Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem. Biophys. Res. Commun. 323, 416-424). Accumulating evidence suggests that homocysteine (HC), a metabolite of methionine, exerts its excitotoxicity through NMDA receptor activation. In the present study, we examined the neuroprotective effects of Rg3 on HC-induced hippocampal excitotoxicity in vitro and in vivo . Our in vitro studies using rat cultured hippocampal neurons revealed that Rg3 treatment significantly and dose-dependently inhibited HC-induced hippocampal cell death, with an EC50 value of 28.7 ± 7.5 μM. Rg3 treatment not only significantly reduced HC-induced DNA damage, but also dose-dependently attenuated HC-induced caspase-3 activity in vitro . Our in vivo studies revealed that intracerebroventricular (i.c.v.) pre-administration of Rg3 significantly and dose-dependently reduced i.c.v. HC-induced hippocampal damage in rats. To examine the mechanisms underlying the in vitro and in vivo neuroprotective effects of Rg3 against HC-induced hippocampal excitotoxicity, we examined the effect of Rg3 on HC-induced intracellular Ca2+ elevations in cultured hippocampal cells and found that Rg3 treatment dose-dependently inhibited HC-induced intracellular Ca2+ elevation, with an IC50 value of 41.5 ± 17.5 μM. In addition, Rg3 treatment dose-dependently inhibited HC-induced currents in Xenopus oocytes expressing the NMDA receptor, with an IC50 of 47.3 ± 14.2 μM. These results collectively indicate that Rg3 -induced neuroprotection against HC in rat hippocampus might be achieved via inhibition of HC-mediated NMDA receptor activation. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/j.brainres.2006.12.047 |