Loading…

Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons

Abstract Increasing evidence indicates that oxidative stress may be involved in the adverse effects of radiofrequency (RF) radiation on the brain. Because mitochondrial DNA (mtDNA) defects are closely associated with various nervous system diseases and mtDNA is particularly susceptible to oxidative...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 2010-01, Vol.1311, p.189-196
Main Authors: Xu, Shangcheng, Zhou, Zhou, Zhang, Lei, Yu, Zhengping, Zhang, Wei, Wang, Yuan, Wang, Xubu, Li, Maoquan, Chen, Yang, Chen, Chunhai, He, Mindi, Zhang, Guangbin, Zhong, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Increasing evidence indicates that oxidative stress may be involved in the adverse effects of radiofrequency (RF) radiation on the brain. Because mitochondrial DNA (mtDNA) defects are closely associated with various nervous system diseases and mtDNA is particularly susceptible to oxidative stress, the purpose of this study was to determine whether radiofrequency radiation can cause oxidative damage to mtDNA. In this study, we exposed primary cultured cortical neurons to pulsed RF electromagnetic fields at a frequency of 1800 MHz modulated by 217 Hz at an average special absorption rate (SAR) of 2 W/kg. At 24 h after exposure, we found that RF radiation induced a significant increase in the levels of 8-hydroxyguanine (8-OHdG), a common biomarker of DNA oxidative damage, in the mitochondria of neurons. Concomitant with this finding, the copy number of mtDNA and the levels of mitochondrial RNA (mtRNA) transcripts showed an obvious reduction after RF exposure. Each of these mtDNA disturbances could be reversed by pretreatment with melatonin, which is known to be an efficient antioxidant in the brain. Together, these results suggested that 1800 MHz RF radiation could cause oxidative damage to mtDNA in primary cultured neurons. Oxidative damage to mtDNA may account for the neurotoxicity of RF radiation in the brain.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2009.10.062