Loading…

An algorithm for online detection of temporal changes in operator cognitive state using real-time psychophysiological data

We consider the problem of on-the-fly detection of temporal changes in the cognitive state of human subjects due to varying levels of difficulty of performed tasks using real-time EEG and EOG data. We construct the Cognitive State Indicator (CSI) as a function that projects the multidimensional EEG/...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical signal processing and control 2010-07, Vol.5 (3), p.229-236
Main Authors: Cannon, Jordan A., Krokhmal, Pavlo A., Lenth, Russell V., Murphey, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the problem of on-the-fly detection of temporal changes in the cognitive state of human subjects due to varying levels of difficulty of performed tasks using real-time EEG and EOG data. We construct the Cognitive State Indicator (CSI) as a function that projects the multidimensional EEG/EOG signals onto the interval [0,1] by maximizing the Kullback–Leibler distance between distributions of the signals, and whose values change continuously with variations in cognitive load. During offline testing (i.e., when evolution in time is disregarded) it was demonstrated that the CSI can serve as a statistically significant discriminator between states of different cognitive loads. In the online setting, a trend detection heuristic (TDH) has been proposed to detect real-time changes in the cognitive state by monitoring trends in the CSI. Our results support the application of the CSI and the TDH in future closed-loop control systems with human supervision.
ISSN:1746-8094
DOI:10.1016/j.bspc.2010.03.005