Loading…

Multi-objective learning based speech enhancement method to increase speech quality and intelligibility for hearing aid device users

Background noise is a critical issue for hearing aid device users; a common solution to address this problem is speech enhancement (SE). In recent times, a novel SE approach based on deep learning technology, called deep denoising autoencoder (DDAE), has been proposed. Previous studies show that the...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical signal processing and control 2019-02, Vol.48, p.35-45
Main Authors: Lai, Ying-Hui, Zheng, Wei-Zhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background noise is a critical issue for hearing aid device users; a common solution to address this problem is speech enhancement (SE). In recent times, a novel SE approach based on deep learning technology, called deep denoising autoencoder (DDAE), has been proposed. Previous studies show that the DDAE SE approach provides superior noise suppression capabilities and produces less distortion than any of the classical SE approaches in the case of processed speech. Motivated by the improved results using DDAE shown in previous studies, we propose the multi-objective learning-based DDAE (M-DDAE) SE approach in this study; in addition, we evaluated its speech quality and intelligibility improvements using seven typical hearing loss audiograms. The experimental results of our objective evaluations show that our M-DDAE approach achieved significantly better results than the DDAE approach in most test conditions. Considering this, the proposed M-DDAE SE approach can be potentially used to further improve the listening performance of hearing aid devices in noisy conditions.
ISSN:1746-8094
1746-8108
DOI:10.1016/j.bspc.2018.09.010