Loading…

A study on S-asymptotically ω-periodic positive mild solutions for damped elastic systems

The goal of this paper is to consider damped elastic systems with delay and nonlocal conditions in the framework of ordered Banach spaces. Firstly, we investigate the existence of minimal positive S-asymptotically ω-periodic mild solution for structural damped elastic systems with delay and nonlocal...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin des sciences mathématiques 2023-10, Vol.187, p.103292, Article 103292
Main Author: Gou, Haide
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c255t-9e5d51c197f2f6900bf9bfdd33164910aa66cb846de30beac248201f883d0a9d3
container_end_page
container_issue
container_start_page 103292
container_title Bulletin des sciences mathématiques
container_volume 187
creator Gou, Haide
description The goal of this paper is to consider damped elastic systems with delay and nonlocal conditions in the framework of ordered Banach spaces. Firstly, we investigate the existence of minimal positive S-asymptotically ω-periodic mild solution for structural damped elastic systems with delay and nonlocal conditions on infinite interval. Secondly, based on monotone iterative technique coupled with fixed point theorem, the existence of minimal positive S-asymptotically ω-periodic mild solution is discussed without assuming the existence of upper and lower solutions. Finally, a concrete problem regarding the vibration equation of simply supported beam is given to illustrate the feasibility of our abstract results.
doi_str_mv 10.1016/j.bulsci.2023.103292
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_bulsci_2023_103292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0007449723000660</els_id><sourcerecordid>S0007449723000660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-9e5d51c197f2f6900bf9bfdd33164910aa66cb846de30beac248201f883d0a9d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtv4CIvMDWXuTQboRRvUHChbtyETHICKTPNkJMW5hF8Ol_JkXHt6sDP-X5-PkJuOVtxxuu7_ao9dmjDSjAhp0gKJc7IgqtKFGXTyHOyYIw1RVmq5pJcIe7ZhClZLcjnhmI-upHGA30rDI79kGMO1nTdSL-_igFSiC5YOkQMOZyA9qFzFGN3zCEekPqYqDP9AI5CZ3BCKY6YocdrcuFNh3Dzd5fk4_Hhfftc7F6fXrabXWFFVeVCQeUqbrlqvPC1Yqz1qvXOScnrUnFmTF3bdl3WDiRrwVhRrgXjfr2Wjhnl5JKUc69NETGB10MKvUmj5kz_-tF7PfvRv3707GfC7mcMpm2nAElPH3Cw4EICm7WL4f-CH2fqcrY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A study on S-asymptotically ω-periodic positive mild solutions for damped elastic systems</title><source>ScienceDirect Freedom Collection</source><creator>Gou, Haide</creator><creatorcontrib>Gou, Haide</creatorcontrib><description>The goal of this paper is to consider damped elastic systems with delay and nonlocal conditions in the framework of ordered Banach spaces. Firstly, we investigate the existence of minimal positive S-asymptotically ω-periodic mild solution for structural damped elastic systems with delay and nonlocal conditions on infinite interval. Secondly, based on monotone iterative technique coupled with fixed point theorem, the existence of minimal positive S-asymptotically ω-periodic mild solution is discussed without assuming the existence of upper and lower solutions. Finally, a concrete problem regarding the vibration equation of simply supported beam is given to illustrate the feasibility of our abstract results.</description><identifier>ISSN: 0007-4497</identifier><identifier>EISSN: 1952-4773</identifier><identifier>DOI: 10.1016/j.bulsci.2023.103292</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Damped elastic systems ; Measure of noncompactness ; Monotone iterative technique ; Nonlocal conditions ; S-asymptotically ω-periodic mild solution</subject><ispartof>Bulletin des sciences mathématiques, 2023-10, Vol.187, p.103292, Article 103292</ispartof><rights>2023 Elsevier Masson SAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-9e5d51c197f2f6900bf9bfdd33164910aa66cb846de30beac248201f883d0a9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gou, Haide</creatorcontrib><title>A study on S-asymptotically ω-periodic positive mild solutions for damped elastic systems</title><title>Bulletin des sciences mathématiques</title><description>The goal of this paper is to consider damped elastic systems with delay and nonlocal conditions in the framework of ordered Banach spaces. Firstly, we investigate the existence of minimal positive S-asymptotically ω-periodic mild solution for structural damped elastic systems with delay and nonlocal conditions on infinite interval. Secondly, based on monotone iterative technique coupled with fixed point theorem, the existence of minimal positive S-asymptotically ω-periodic mild solution is discussed without assuming the existence of upper and lower solutions. Finally, a concrete problem regarding the vibration equation of simply supported beam is given to illustrate the feasibility of our abstract results.</description><subject>Damped elastic systems</subject><subject>Measure of noncompactness</subject><subject>Monotone iterative technique</subject><subject>Nonlocal conditions</subject><subject>S-asymptotically ω-periodic mild solution</subject><issn>0007-4497</issn><issn>1952-4773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtv4CIvMDWXuTQboRRvUHChbtyETHICKTPNkJMW5hF8Ol_JkXHt6sDP-X5-PkJuOVtxxuu7_ao9dmjDSjAhp0gKJc7IgqtKFGXTyHOyYIw1RVmq5pJcIe7ZhClZLcjnhmI-upHGA30rDI79kGMO1nTdSL-_igFSiC5YOkQMOZyA9qFzFGN3zCEekPqYqDP9AI5CZ3BCKY6YocdrcuFNh3Dzd5fk4_Hhfftc7F6fXrabXWFFVeVCQeUqbrlqvPC1Yqz1qvXOScnrUnFmTF3bdl3WDiRrwVhRrgXjfr2Wjhnl5JKUc69NETGB10MKvUmj5kz_-tF7PfvRv3707GfC7mcMpm2nAElPH3Cw4EICm7WL4f-CH2fqcrY</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Gou, Haide</creator><general>Elsevier Masson SAS</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202310</creationdate><title>A study on S-asymptotically ω-periodic positive mild solutions for damped elastic systems</title><author>Gou, Haide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-9e5d51c197f2f6900bf9bfdd33164910aa66cb846de30beac248201f883d0a9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Damped elastic systems</topic><topic>Measure of noncompactness</topic><topic>Monotone iterative technique</topic><topic>Nonlocal conditions</topic><topic>S-asymptotically ω-periodic mild solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Haide</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin des sciences mathématiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Haide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on S-asymptotically ω-periodic positive mild solutions for damped elastic systems</atitle><jtitle>Bulletin des sciences mathématiques</jtitle><date>2023-10</date><risdate>2023</risdate><volume>187</volume><spage>103292</spage><pages>103292-</pages><artnum>103292</artnum><issn>0007-4497</issn><eissn>1952-4773</eissn><abstract>The goal of this paper is to consider damped elastic systems with delay and nonlocal conditions in the framework of ordered Banach spaces. Firstly, we investigate the existence of minimal positive S-asymptotically ω-periodic mild solution for structural damped elastic systems with delay and nonlocal conditions on infinite interval. Secondly, based on monotone iterative technique coupled with fixed point theorem, the existence of minimal positive S-asymptotically ω-periodic mild solution is discussed without assuming the existence of upper and lower solutions. Finally, a concrete problem regarding the vibration equation of simply supported beam is given to illustrate the feasibility of our abstract results.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.bulsci.2023.103292</doi></addata></record>
fulltext fulltext
identifier ISSN: 0007-4497
ispartof Bulletin des sciences mathématiques, 2023-10, Vol.187, p.103292, Article 103292
issn 0007-4497
1952-4773
language eng
recordid cdi_crossref_primary_10_1016_j_bulsci_2023_103292
source ScienceDirect Freedom Collection
subjects Damped elastic systems
Measure of noncompactness
Monotone iterative technique
Nonlocal conditions
S-asymptotically ω-periodic mild solution
title A study on S-asymptotically ω-periodic positive mild solutions for damped elastic systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20S-asymptotically%20%CF%89-periodic%20positive%20mild%20solutions%20for%20damped%20elastic%20systems&rft.jtitle=Bulletin%20des%20sciences%20math%C3%A9matiques&rft.au=Gou,%20Haide&rft.date=2023-10&rft.volume=187&rft.spage=103292&rft.pages=103292-&rft.artnum=103292&rft.issn=0007-4497&rft.eissn=1952-4773&rft_id=info:doi/10.1016/j.bulsci.2023.103292&rft_dat=%3Celsevier_cross%3ES0007449723000660%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-9e5d51c197f2f6900bf9bfdd33164910aa66cb846de30beac248201f883d0a9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true