Loading…

Curvature continuous corner cutting

Subdivision schemes are used to generate smooth curves by iteratively refining an initial control polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points on each edge of the current polygon and connect them to get the refined polygon, thus cutting off the cor...

Full description

Saved in:
Bibliographic Details
Published in:Computer aided geometric design 2024-11, Vol.114, p.102392, Article 102392
Main Authors: Hormann, Kai, Mancinelli, Claudio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c225t-b9e194c2ae26accf916f86a44c1d91766547f8efc960c2ee708963b2d7e1753b3
container_end_page
container_issue
container_start_page 102392
container_title Computer aided geometric design
container_volume 114
creator Hormann, Kai
Mancinelli, Claudio
description Subdivision schemes are used to generate smooth curves by iteratively refining an initial control polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points on each edge of the current polygon and connect them to get the refined polygon, thus cutting off the corners of the current polygon. While de Boor (1987) shows that this process always converges to a Lipschitz continuous limit curve, no matter how the points on each edge are chosen, Gregory and Qu (1996) discover that the limit curve is continuously differentiable under certain constraints. We extend these results and show that the limit curve can even be curvature continuous for specific sequences of cut ratios. •Proof that non-uniform corner cutting schemes can generate curvature continuous limit curves.•Corner cutting rules for generating cubic B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform γ-B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform rational γ-B-splines as limit curves.
doi_str_mv 10.1016/j.cagd.2024.102392
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cagd_2024_102392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167839624001262</els_id><sourcerecordid>S0167839624001262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-b9e194c2ae26accf916f86a44c1d91766547f8efc960c2ee708963b2d7e1753b3</originalsourceid><addsrcrecordid>eNp9j01LxDAQhnNQcF39A54WPLcm0zZpwIsUv2DBy-45pNPJkqKtJO2C_96UevY0w_vyDPMwdid4LriQD32O9tTlwKFMARQaLtgmFSqrCy2v2HWMPecchJYbdt_M4WynOdAOx2HywzzOMa1hoLDDeUrJ6YZdOvsZ6fZvbtnx5fnQvGX7j9f35mmfIUA1Za0moUsESyAtotNCulraskTRaaGkrErlanKoJUcgUrzWsmihUyRUVbTFlsF6F8MYYyBnvoP_suHHCG4WNdObRc0samZVS9DjClH67OwpmIieBqTOB8LJdKP_D_8FvGNY8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Curvature continuous corner cutting</title><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Hormann, Kai ; Mancinelli, Claudio</creator><creatorcontrib>Hormann, Kai ; Mancinelli, Claudio</creatorcontrib><description>Subdivision schemes are used to generate smooth curves by iteratively refining an initial control polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points on each edge of the current polygon and connect them to get the refined polygon, thus cutting off the corners of the current polygon. While de Boor (1987) shows that this process always converges to a Lipschitz continuous limit curve, no matter how the points on each edge are chosen, Gregory and Qu (1996) discover that the limit curve is continuously differentiable under certain constraints. We extend these results and show that the limit curve can even be curvature continuous for specific sequences of cut ratios. •Proof that non-uniform corner cutting schemes can generate curvature continuous limit curves.•Corner cutting rules for generating cubic B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform γ-B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform rational γ-B-splines as limit curves.</description><identifier>ISSN: 0167-8396</identifier><identifier>DOI: 10.1016/j.cagd.2024.102392</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Corner cutting ; Curvature continuity ; Subdivision</subject><ispartof>Computer aided geometric design, 2024-11, Vol.114, p.102392, Article 102392</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-b9e194c2ae26accf916f86a44c1d91766547f8efc960c2ee708963b2d7e1753b3</cites><orcidid>0000-0001-6455-4246 ; 0000-0001-7935-3500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167839624001262$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3550,27903,27904,45981</link.rule.ids></links><search><creatorcontrib>Hormann, Kai</creatorcontrib><creatorcontrib>Mancinelli, Claudio</creatorcontrib><title>Curvature continuous corner cutting</title><title>Computer aided geometric design</title><description>Subdivision schemes are used to generate smooth curves by iteratively refining an initial control polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points on each edge of the current polygon and connect them to get the refined polygon, thus cutting off the corners of the current polygon. While de Boor (1987) shows that this process always converges to a Lipschitz continuous limit curve, no matter how the points on each edge are chosen, Gregory and Qu (1996) discover that the limit curve is continuously differentiable under certain constraints. We extend these results and show that the limit curve can even be curvature continuous for specific sequences of cut ratios. •Proof that non-uniform corner cutting schemes can generate curvature continuous limit curves.•Corner cutting rules for generating cubic B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform γ-B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform rational γ-B-splines as limit curves.</description><subject>Corner cutting</subject><subject>Curvature continuity</subject><subject>Subdivision</subject><issn>0167-8396</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhnNQcF39A54WPLcm0zZpwIsUv2DBy-45pNPJkqKtJO2C_96UevY0w_vyDPMwdid4LriQD32O9tTlwKFMARQaLtgmFSqrCy2v2HWMPecchJYbdt_M4WynOdAOx2HywzzOMa1hoLDDeUrJ6YZdOvsZ6fZvbtnx5fnQvGX7j9f35mmfIUA1Za0moUsESyAtotNCulraskTRaaGkrErlanKoJUcgUrzWsmihUyRUVbTFlsF6F8MYYyBnvoP_suHHCG4WNdObRc0samZVS9DjClH67OwpmIieBqTOB8LJdKP_D_8FvGNY8Q</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Hormann, Kai</creator><creator>Mancinelli, Claudio</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6455-4246</orcidid><orcidid>https://orcid.org/0000-0001-7935-3500</orcidid></search><sort><creationdate>202411</creationdate><title>Curvature continuous corner cutting</title><author>Hormann, Kai ; Mancinelli, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-b9e194c2ae26accf916f86a44c1d91766547f8efc960c2ee708963b2d7e1753b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Corner cutting</topic><topic>Curvature continuity</topic><topic>Subdivision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hormann, Kai</creatorcontrib><creatorcontrib>Mancinelli, Claudio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Computer aided geometric design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hormann, Kai</au><au>Mancinelli, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvature continuous corner cutting</atitle><jtitle>Computer aided geometric design</jtitle><date>2024-11</date><risdate>2024</risdate><volume>114</volume><spage>102392</spage><pages>102392-</pages><artnum>102392</artnum><issn>0167-8396</issn><abstract>Subdivision schemes are used to generate smooth curves by iteratively refining an initial control polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points on each edge of the current polygon and connect them to get the refined polygon, thus cutting off the corners of the current polygon. While de Boor (1987) shows that this process always converges to a Lipschitz continuous limit curve, no matter how the points on each edge are chosen, Gregory and Qu (1996) discover that the limit curve is continuously differentiable under certain constraints. We extend these results and show that the limit curve can even be curvature continuous for specific sequences of cut ratios. •Proof that non-uniform corner cutting schemes can generate curvature continuous limit curves.•Corner cutting rules for generating cubic B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform γ-B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform rational γ-B-splines as limit curves.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cagd.2024.102392</doi><orcidid>https://orcid.org/0000-0001-6455-4246</orcidid><orcidid>https://orcid.org/0000-0001-7935-3500</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8396
ispartof Computer aided geometric design, 2024-11, Vol.114, p.102392, Article 102392
issn 0167-8396
language eng
recordid cdi_crossref_primary_10_1016_j_cagd_2024_102392
source ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]
subjects Corner cutting
Curvature continuity
Subdivision
title Curvature continuous corner cutting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvature%20continuous%20corner%20cutting&rft.jtitle=Computer%20aided%20geometric%20design&rft.au=Hormann,%20Kai&rft.date=2024-11&rft.volume=114&rft.spage=102392&rft.pages=102392-&rft.artnum=102392&rft.issn=0167-8396&rft_id=info:doi/10.1016/j.cagd.2024.102392&rft_dat=%3Celsevier_cross%3ES0167839624001262%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-b9e194c2ae26accf916f86a44c1d91766547f8efc960c2ee708963b2d7e1753b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true