Loading…
Curvature continuous corner cutting
Subdivision schemes are used to generate smooth curves by iteratively refining an initial control polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points on each edge of the current polygon and connect them to get the refined polygon, thus cutting off the cor...
Saved in:
Published in: | Computer aided geometric design 2024-11, Vol.114, p.102392, Article 102392 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c225t-b9e194c2ae26accf916f86a44c1d91766547f8efc960c2ee708963b2d7e1753b3 |
container_end_page | |
container_issue | |
container_start_page | 102392 |
container_title | Computer aided geometric design |
container_volume | 114 |
creator | Hormann, Kai Mancinelli, Claudio |
description | Subdivision schemes are used to generate smooth curves by iteratively refining an initial control polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points on each edge of the current polygon and connect them to get the refined polygon, thus cutting off the corners of the current polygon. While de Boor (1987) shows that this process always converges to a Lipschitz continuous limit curve, no matter how the points on each edge are chosen, Gregory and Qu (1996) discover that the limit curve is continuously differentiable under certain constraints. We extend these results and show that the limit curve can even be curvature continuous for specific sequences of cut ratios.
•Proof that non-uniform corner cutting schemes can generate curvature continuous limit curves.•Corner cutting rules for generating cubic B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform γ-B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform rational γ-B-splines as limit curves. |
doi_str_mv | 10.1016/j.cagd.2024.102392 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cagd_2024_102392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167839624001262</els_id><sourcerecordid>S0167839624001262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-b9e194c2ae26accf916f86a44c1d91766547f8efc960c2ee708963b2d7e1753b3</originalsourceid><addsrcrecordid>eNp9j01LxDAQhnNQcF39A54WPLcm0zZpwIsUv2DBy-45pNPJkqKtJO2C_96UevY0w_vyDPMwdid4LriQD32O9tTlwKFMARQaLtgmFSqrCy2v2HWMPecchJYbdt_M4WynOdAOx2HywzzOMa1hoLDDeUrJ6YZdOvsZ6fZvbtnx5fnQvGX7j9f35mmfIUA1Za0moUsESyAtotNCulraskTRaaGkrErlanKoJUcgUrzWsmihUyRUVbTFlsF6F8MYYyBnvoP_suHHCG4WNdObRc0samZVS9DjClH67OwpmIieBqTOB8LJdKP_D_8FvGNY8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Curvature continuous corner cutting</title><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Hormann, Kai ; Mancinelli, Claudio</creator><creatorcontrib>Hormann, Kai ; Mancinelli, Claudio</creatorcontrib><description>Subdivision schemes are used to generate smooth curves by iteratively refining an initial control polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points on each edge of the current polygon and connect them to get the refined polygon, thus cutting off the corners of the current polygon. While de Boor (1987) shows that this process always converges to a Lipschitz continuous limit curve, no matter how the points on each edge are chosen, Gregory and Qu (1996) discover that the limit curve is continuously differentiable under certain constraints. We extend these results and show that the limit curve can even be curvature continuous for specific sequences of cut ratios.
•Proof that non-uniform corner cutting schemes can generate curvature continuous limit curves.•Corner cutting rules for generating cubic B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform γ-B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform rational γ-B-splines as limit curves.</description><identifier>ISSN: 0167-8396</identifier><identifier>DOI: 10.1016/j.cagd.2024.102392</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Corner cutting ; Curvature continuity ; Subdivision</subject><ispartof>Computer aided geometric design, 2024-11, Vol.114, p.102392, Article 102392</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-b9e194c2ae26accf916f86a44c1d91766547f8efc960c2ee708963b2d7e1753b3</cites><orcidid>0000-0001-6455-4246 ; 0000-0001-7935-3500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167839624001262$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3550,27903,27904,45981</link.rule.ids></links><search><creatorcontrib>Hormann, Kai</creatorcontrib><creatorcontrib>Mancinelli, Claudio</creatorcontrib><title>Curvature continuous corner cutting</title><title>Computer aided geometric design</title><description>Subdivision schemes are used to generate smooth curves by iteratively refining an initial control polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points on each edge of the current polygon and connect them to get the refined polygon, thus cutting off the corners of the current polygon. While de Boor (1987) shows that this process always converges to a Lipschitz continuous limit curve, no matter how the points on each edge are chosen, Gregory and Qu (1996) discover that the limit curve is continuously differentiable under certain constraints. We extend these results and show that the limit curve can even be curvature continuous for specific sequences of cut ratios.
•Proof that non-uniform corner cutting schemes can generate curvature continuous limit curves.•Corner cutting rules for generating cubic B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform γ-B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform rational γ-B-splines as limit curves.</description><subject>Corner cutting</subject><subject>Curvature continuity</subject><subject>Subdivision</subject><issn>0167-8396</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhnNQcF39A54WPLcm0zZpwIsUv2DBy-45pNPJkqKtJO2C_96UevY0w_vyDPMwdid4LriQD32O9tTlwKFMARQaLtgmFSqrCy2v2HWMPecchJYbdt_M4WynOdAOx2HywzzOMa1hoLDDeUrJ6YZdOvsZ6fZvbtnx5fnQvGX7j9f35mmfIUA1Za0moUsESyAtotNCulraskTRaaGkrErlanKoJUcgUrzWsmihUyRUVbTFlsF6F8MYYyBnvoP_suHHCG4WNdObRc0samZVS9DjClH67OwpmIieBqTOB8LJdKP_D_8FvGNY8Q</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Hormann, Kai</creator><creator>Mancinelli, Claudio</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6455-4246</orcidid><orcidid>https://orcid.org/0000-0001-7935-3500</orcidid></search><sort><creationdate>202411</creationdate><title>Curvature continuous corner cutting</title><author>Hormann, Kai ; Mancinelli, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-b9e194c2ae26accf916f86a44c1d91766547f8efc960c2ee708963b2d7e1753b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Corner cutting</topic><topic>Curvature continuity</topic><topic>Subdivision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hormann, Kai</creatorcontrib><creatorcontrib>Mancinelli, Claudio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Computer aided geometric design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hormann, Kai</au><au>Mancinelli, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvature continuous corner cutting</atitle><jtitle>Computer aided geometric design</jtitle><date>2024-11</date><risdate>2024</risdate><volume>114</volume><spage>102392</spage><pages>102392-</pages><artnum>102392</artnum><issn>0167-8396</issn><abstract>Subdivision schemes are used to generate smooth curves by iteratively refining an initial control polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points on each edge of the current polygon and connect them to get the refined polygon, thus cutting off the corners of the current polygon. While de Boor (1987) shows that this process always converges to a Lipschitz continuous limit curve, no matter how the points on each edge are chosen, Gregory and Qu (1996) discover that the limit curve is continuously differentiable under certain constraints. We extend these results and show that the limit curve can even be curvature continuous for specific sequences of cut ratios.
•Proof that non-uniform corner cutting schemes can generate curvature continuous limit curves.•Corner cutting rules for generating cubic B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform γ-B-splines as limit curves.•Corner cutting rules for generating cubic non-uniform rational γ-B-splines as limit curves.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cagd.2024.102392</doi><orcidid>https://orcid.org/0000-0001-6455-4246</orcidid><orcidid>https://orcid.org/0000-0001-7935-3500</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8396 |
ispartof | Computer aided geometric design, 2024-11, Vol.114, p.102392, Article 102392 |
issn | 0167-8396 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cagd_2024_102392 |
source | ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Corner cutting Curvature continuity Subdivision |
title | Curvature continuous corner cutting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvature%20continuous%20corner%20cutting&rft.jtitle=Computer%20aided%20geometric%20design&rft.au=Hormann,%20Kai&rft.date=2024-11&rft.volume=114&rft.spage=102392&rft.pages=102392-&rft.artnum=102392&rft.issn=0167-8396&rft_id=info:doi/10.1016/j.cagd.2024.102392&rft_dat=%3Celsevier_cross%3ES0167839624001262%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-b9e194c2ae26accf916f86a44c1d91766547f8efc960c2ee708963b2d7e1753b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |