Loading…

Approximation of highly oscillatory integrals containing special functions

A modified form of Levin’s method based on multi-quadric radial basis function is presented for numerical evaluation of integrals having squared oscillatory Bessel function of the first kind of order μ and oscillatory Airy function. The method converts the oscillatory integrals into a system of coup...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2020-02, Vol.365, p.112372, Article 112372
Main Authors: Zaman, Sakhi, Siraj-ul-Islam, Hussain, Iqrar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-d97562f8870f8686d75e401a32b4f89f308af8b8f67c74f48034f93d29f046e83
cites cdi_FETCH-LOGICAL-c340t-d97562f8870f8686d75e401a32b4f89f308af8b8f67c74f48034f93d29f046e83
container_end_page
container_issue
container_start_page 112372
container_title Journal of computational and applied mathematics
container_volume 365
creator Zaman, Sakhi
Siraj-ul-Islam
Hussain, Iqrar
description A modified form of Levin’s method based on multi-quadric radial basis function is presented for numerical evaluation of integrals having squared oscillatory Bessel function of the first kind of order μ and oscillatory Airy function. The method converts the oscillatory integrals into a system of coupled ordinary differential equations (ODEs) and subsequently, numerical solution of the coupled ODEs is obtained by meshless collocation procedure. A multi-resolution quadrature is used to tackle singularity of the proposed method. Theoretical error analysis of the proposed methods is performed in asymptotic sense. Numerical test problems are included to verify accuracy and efficiency of the new methods in the context of oscillatory Airy and Bessel integrals.
doi_str_mv 10.1016/j.cam.2019.112372
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2019_112372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042719303759</els_id><sourcerecordid>S0377042719303759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-d97562f8870f8686d75e401a32b4f89f308af8b8f67c74f48034f93d29f046e83</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C4vMOPJpbngqohXCm50HdJM0qZMkyEZxb69U-ra1b853-H_P4RuCbQEiLjbtc7uWwpEt4RQJukZmhEldUOkVOdoBkzKBjiVl-iq1h0ACE34DL0th6Hkn7i3Y8wJ54C3cbPtDzhXF_vejrkccEyj3xTbV-xyGm1MMW1wHbyLtsfhK7kjW6_RRZhu_M1fztHn0-PHw0uzen9-fViuGsc4jE2n5ULQoJSEoIQSnVx4DsQyuuZB6cBA2aDWKgjpJA9cAeNBs47qAFx4xeaInP66kmstPpihTP3LwRAwRxlmZyYZ5ijDnGRMzP2J8VOx7-iLmeb55HwXi3ej6XL8h_4FjMZoGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximation of highly oscillatory integrals containing special functions</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Zaman, Sakhi ; Siraj-ul-Islam ; Hussain, Iqrar</creator><creatorcontrib>Zaman, Sakhi ; Siraj-ul-Islam ; Hussain, Iqrar</creatorcontrib><description>A modified form of Levin’s method based on multi-quadric radial basis function is presented for numerical evaluation of integrals having squared oscillatory Bessel function of the first kind of order μ and oscillatory Airy function. The method converts the oscillatory integrals into a system of coupled ordinary differential equations (ODEs) and subsequently, numerical solution of the coupled ODEs is obtained by meshless collocation procedure. A multi-resolution quadrature is used to tackle singularity of the proposed method. Theoretical error analysis of the proposed methods is performed in asymptotic sense. Numerical test problems are included to verify accuracy and efficiency of the new methods in the context of oscillatory Airy and Bessel integrals.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2019.112372</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Meshless-Levin collocation method ; Multi-resolution quadrature ; Oscillatory Airy function ; Squared oscillatory Bessel function</subject><ispartof>Journal of computational and applied mathematics, 2020-02, Vol.365, p.112372, Article 112372</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-d97562f8870f8686d75e401a32b4f89f308af8b8f67c74f48034f93d29f046e83</citedby><cites>FETCH-LOGICAL-c340t-d97562f8870f8686d75e401a32b4f89f308af8b8f67c74f48034f93d29f046e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zaman, Sakhi</creatorcontrib><creatorcontrib>Siraj-ul-Islam</creatorcontrib><creatorcontrib>Hussain, Iqrar</creatorcontrib><title>Approximation of highly oscillatory integrals containing special functions</title><title>Journal of computational and applied mathematics</title><description>A modified form of Levin’s method based on multi-quadric radial basis function is presented for numerical evaluation of integrals having squared oscillatory Bessel function of the first kind of order μ and oscillatory Airy function. The method converts the oscillatory integrals into a system of coupled ordinary differential equations (ODEs) and subsequently, numerical solution of the coupled ODEs is obtained by meshless collocation procedure. A multi-resolution quadrature is used to tackle singularity of the proposed method. Theoretical error analysis of the proposed methods is performed in asymptotic sense. Numerical test problems are included to verify accuracy and efficiency of the new methods in the context of oscillatory Airy and Bessel integrals.</description><subject>Meshless-Levin collocation method</subject><subject>Multi-resolution quadrature</subject><subject>Oscillatory Airy function</subject><subject>Squared oscillatory Bessel function</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C4vMOPJpbngqohXCm50HdJM0qZMkyEZxb69U-ra1b853-H_P4RuCbQEiLjbtc7uWwpEt4RQJukZmhEldUOkVOdoBkzKBjiVl-iq1h0ACE34DL0th6Hkn7i3Y8wJ54C3cbPtDzhXF_vejrkccEyj3xTbV-xyGm1MMW1wHbyLtsfhK7kjW6_RRZhu_M1fztHn0-PHw0uzen9-fViuGsc4jE2n5ULQoJSEoIQSnVx4DsQyuuZB6cBA2aDWKgjpJA9cAeNBs47qAFx4xeaInP66kmstPpihTP3LwRAwRxlmZyYZ5ijDnGRMzP2J8VOx7-iLmeb55HwXi3ej6XL8h_4FjMZoGA</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Zaman, Sakhi</creator><creator>Siraj-ul-Islam</creator><creator>Hussain, Iqrar</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202002</creationdate><title>Approximation of highly oscillatory integrals containing special functions</title><author>Zaman, Sakhi ; Siraj-ul-Islam ; Hussain, Iqrar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-d97562f8870f8686d75e401a32b4f89f308af8b8f67c74f48034f93d29f046e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Meshless-Levin collocation method</topic><topic>Multi-resolution quadrature</topic><topic>Oscillatory Airy function</topic><topic>Squared oscillatory Bessel function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaman, Sakhi</creatorcontrib><creatorcontrib>Siraj-ul-Islam</creatorcontrib><creatorcontrib>Hussain, Iqrar</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaman, Sakhi</au><au>Siraj-ul-Islam</au><au>Hussain, Iqrar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of highly oscillatory integrals containing special functions</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2020-02</date><risdate>2020</risdate><volume>365</volume><spage>112372</spage><pages>112372-</pages><artnum>112372</artnum><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>A modified form of Levin’s method based on multi-quadric radial basis function is presented for numerical evaluation of integrals having squared oscillatory Bessel function of the first kind of order μ and oscillatory Airy function. The method converts the oscillatory integrals into a system of coupled ordinary differential equations (ODEs) and subsequently, numerical solution of the coupled ODEs is obtained by meshless collocation procedure. A multi-resolution quadrature is used to tackle singularity of the proposed method. Theoretical error analysis of the proposed methods is performed in asymptotic sense. Numerical test problems are included to verify accuracy and efficiency of the new methods in the context of oscillatory Airy and Bessel integrals.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2019.112372</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2020-02, Vol.365, p.112372, Article 112372
issn 0377-0427
1879-1778
language eng
recordid cdi_crossref_primary_10_1016_j_cam_2019_112372
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Meshless-Levin collocation method
Multi-resolution quadrature
Oscillatory Airy function
Squared oscillatory Bessel function
title Approximation of highly oscillatory integrals containing special functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20highly%20oscillatory%20integrals%20containing%20special%20functions&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Zaman,%20Sakhi&rft.date=2020-02&rft.volume=365&rft.spage=112372&rft.pages=112372-&rft.artnum=112372&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2019.112372&rft_dat=%3Celsevier_cross%3ES0377042719303759%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-d97562f8870f8686d75e401a32b4f89f308af8b8f67c74f48034f93d29f046e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true