Loading…

A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials

In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2021-01, Vol.381, p.113024, Article 113024
Main Authors: Zhai, Fang-Man, Cao, Li-Qun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793
cites cdi_FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793
container_end_page
container_issue
container_start_page 113024
container_title Journal of computational and applied mathematics
container_volume 381
creator Zhai, Fang-Man
Cao, Li-Qun
description In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solutions are given rigorously. The numerical experiments are carried out to validate the theoretical results of this paper. It is pointed out that the proposed method allows us to choose a relative coarse grid and solve problems in parallel, and therefore it can greatly save computer memory storage and CPU time.
doi_str_mv 10.1016/j.cam.2020.113024
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2020_113024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042720303150</els_id><sourcerecordid>S0377042720303150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8Ayl-pHEiVlXFS6rEBtaWOx6nrpwHtoPE3xMoa1Z35kpnNDqE3HK24oxXd8cVmG4lmJh3Lpkoz8iC16opuFL1OVkwqVTBSqEuyVVKR8ZY1fByQdyGdlPIPoEJSEcTTQgYqAntEH0-dNQNkdrJhGI8mIRFMG3r-5Ye0GQKQ28nyH7oKX5M5nfw_Vx345B8RtqZjNGbkK7JhZsDb_5ySd4fH962z8Xu9ellu9kVIBqVCwko69KCWfNGuLqscO0MgLOqUQqFkPvKSVHuYS-klbXjUoCrLLJ1Y3mpGrkk_HQX4pBSRKfH6DsTvzRn-keUPupZlP4RpU-iZub-xOD82KfHqBN47AGtjwhZ28H_Q38DfTxy-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials</title><source>ScienceDirect Freedom Collection</source><creator>Zhai, Fang-Man ; Cao, Li-Qun</creator><creatorcontrib>Zhai, Fang-Man ; Cao, Li-Qun</creatorcontrib><description>In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solutions are given rigorously. The numerical experiments are carried out to validate the theoretical results of this paper. It is pointed out that the proposed method allows us to choose a relative coarse grid and solve problems in parallel, and therefore it can greatly save computer memory storage and CPU time.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2020.113024</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Composite materials ; Dual-phase-lagging heat conduction equation ; Finite element method ; Homogenization ; Laplace transformation ; Multiscale asymptotic method</subject><ispartof>Journal of computational and applied mathematics, 2021-01, Vol.381, p.113024, Article 113024</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793</citedby><cites>FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhai, Fang-Man</creatorcontrib><creatorcontrib>Cao, Li-Qun</creatorcontrib><title>A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials</title><title>Journal of computational and applied mathematics</title><description>In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solutions are given rigorously. The numerical experiments are carried out to validate the theoretical results of this paper. It is pointed out that the proposed method allows us to choose a relative coarse grid and solve problems in parallel, and therefore it can greatly save computer memory storage and CPU time.</description><subject>Composite materials</subject><subject>Dual-phase-lagging heat conduction equation</subject><subject>Finite element method</subject><subject>Homogenization</subject><subject>Laplace transformation</subject><subject>Multiscale asymptotic method</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8Ayl-pHEiVlXFS6rEBtaWOx6nrpwHtoPE3xMoa1Z35kpnNDqE3HK24oxXd8cVmG4lmJh3Lpkoz8iC16opuFL1OVkwqVTBSqEuyVVKR8ZY1fByQdyGdlPIPoEJSEcTTQgYqAntEH0-dNQNkdrJhGI8mIRFMG3r-5Ye0GQKQ28nyH7oKX5M5nfw_Vx345B8RtqZjNGbkK7JhZsDb_5ySd4fH962z8Xu9ellu9kVIBqVCwko69KCWfNGuLqscO0MgLOqUQqFkPvKSVHuYS-klbXjUoCrLLJ1Y3mpGrkk_HQX4pBSRKfH6DsTvzRn-keUPupZlP4RpU-iZub-xOD82KfHqBN47AGtjwhZ28H_Q38DfTxy-A</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhai, Fang-Man</creator><creator>Cao, Li-Qun</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials</title><author>Zhai, Fang-Man ; Cao, Li-Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite materials</topic><topic>Dual-phase-lagging heat conduction equation</topic><topic>Finite element method</topic><topic>Homogenization</topic><topic>Laplace transformation</topic><topic>Multiscale asymptotic method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Fang-Man</creatorcontrib><creatorcontrib>Cao, Li-Qun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Fang-Man</au><au>Cao, Li-Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>381</volume><spage>113024</spage><pages>113024-</pages><artnum>113024</artnum><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solutions are given rigorously. The numerical experiments are carried out to validate the theoretical results of this paper. It is pointed out that the proposed method allows us to choose a relative coarse grid and solve problems in parallel, and therefore it can greatly save computer memory storage and CPU time.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2020.113024</doi></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2021-01, Vol.381, p.113024, Article 113024
issn 0377-0427
1879-1778
language eng
recordid cdi_crossref_primary_10_1016_j_cam_2020_113024
source ScienceDirect Freedom Collection
subjects Composite materials
Dual-phase-lagging heat conduction equation
Finite element method
Homogenization
Laplace transformation
Multiscale asymptotic method
title A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiscale%20parallel%20algorithm%20for%20dual-phase-lagging%20heat%20conduction%20equation%20in%20composite%20materials&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Zhai,%20Fang-Man&rft.date=2021-01-01&rft.volume=381&rft.spage=113024&rft.pages=113024-&rft.artnum=113024&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2020.113024&rft_dat=%3Celsevier_cross%3ES0377042720303150%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true