Loading…
A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials
In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solu...
Saved in:
Published in: | Journal of computational and applied mathematics 2021-01, Vol.381, p.113024, Article 113024 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793 |
container_end_page | |
container_issue | |
container_start_page | 113024 |
container_title | Journal of computational and applied mathematics |
container_volume | 381 |
creator | Zhai, Fang-Man Cao, Li-Qun |
description | In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solutions are given rigorously. The numerical experiments are carried out to validate the theoretical results of this paper. It is pointed out that the proposed method allows us to choose a relative coarse grid and solve problems in parallel, and therefore it can greatly save computer memory storage and CPU time. |
doi_str_mv | 10.1016/j.cam.2020.113024 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2020_113024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042720303150</els_id><sourcerecordid>S0377042720303150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8Ayl-pHEiVlXFS6rEBtaWOx6nrpwHtoPE3xMoa1Z35kpnNDqE3HK24oxXd8cVmG4lmJh3Lpkoz8iC16opuFL1OVkwqVTBSqEuyVVKR8ZY1fByQdyGdlPIPoEJSEcTTQgYqAntEH0-dNQNkdrJhGI8mIRFMG3r-5Ye0GQKQ28nyH7oKX5M5nfw_Vx345B8RtqZjNGbkK7JhZsDb_5ySd4fH962z8Xu9ellu9kVIBqVCwko69KCWfNGuLqscO0MgLOqUQqFkPvKSVHuYS-klbXjUoCrLLJ1Y3mpGrkk_HQX4pBSRKfH6DsTvzRn-keUPupZlP4RpU-iZub-xOD82KfHqBN47AGtjwhZ28H_Q38DfTxy-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials</title><source>ScienceDirect Freedom Collection</source><creator>Zhai, Fang-Man ; Cao, Li-Qun</creator><creatorcontrib>Zhai, Fang-Man ; Cao, Li-Qun</creatorcontrib><description>In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solutions are given rigorously. The numerical experiments are carried out to validate the theoretical results of this paper. It is pointed out that the proposed method allows us to choose a relative coarse grid and solve problems in parallel, and therefore it can greatly save computer memory storage and CPU time.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2020.113024</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Composite materials ; Dual-phase-lagging heat conduction equation ; Finite element method ; Homogenization ; Laplace transformation ; Multiscale asymptotic method</subject><ispartof>Journal of computational and applied mathematics, 2021-01, Vol.381, p.113024, Article 113024</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793</citedby><cites>FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhai, Fang-Man</creatorcontrib><creatorcontrib>Cao, Li-Qun</creatorcontrib><title>A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials</title><title>Journal of computational and applied mathematics</title><description>In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solutions are given rigorously. The numerical experiments are carried out to validate the theoretical results of this paper. It is pointed out that the proposed method allows us to choose a relative coarse grid and solve problems in parallel, and therefore it can greatly save computer memory storage and CPU time.</description><subject>Composite materials</subject><subject>Dual-phase-lagging heat conduction equation</subject><subject>Finite element method</subject><subject>Homogenization</subject><subject>Laplace transformation</subject><subject>Multiscale asymptotic method</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8Ayl-pHEiVlXFS6rEBtaWOx6nrpwHtoPE3xMoa1Z35kpnNDqE3HK24oxXd8cVmG4lmJh3Lpkoz8iC16opuFL1OVkwqVTBSqEuyVVKR8ZY1fByQdyGdlPIPoEJSEcTTQgYqAntEH0-dNQNkdrJhGI8mIRFMG3r-5Ye0GQKQ28nyH7oKX5M5nfw_Vx345B8RtqZjNGbkK7JhZsDb_5ySd4fH962z8Xu9ellu9kVIBqVCwko69KCWfNGuLqscO0MgLOqUQqFkPvKSVHuYS-klbXjUoCrLLJ1Y3mpGrkk_HQX4pBSRKfH6DsTvzRn-keUPupZlP4RpU-iZub-xOD82KfHqBN47AGtjwhZ28H_Q38DfTxy-A</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhai, Fang-Man</creator><creator>Cao, Li-Qun</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials</title><author>Zhai, Fang-Man ; Cao, Li-Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite materials</topic><topic>Dual-phase-lagging heat conduction equation</topic><topic>Finite element method</topic><topic>Homogenization</topic><topic>Laplace transformation</topic><topic>Multiscale asymptotic method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Fang-Man</creatorcontrib><creatorcontrib>Cao, Li-Qun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Fang-Man</au><au>Cao, Li-Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>381</volume><spage>113024</spage><pages>113024-</pages><artnum>113024</artnum><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solutions are given rigorously. The numerical experiments are carried out to validate the theoretical results of this paper. It is pointed out that the proposed method allows us to choose a relative coarse grid and solve problems in parallel, and therefore it can greatly save computer memory storage and CPU time.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2020.113024</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2021-01, Vol.381, p.113024, Article 113024 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cam_2020_113024 |
source | ScienceDirect Freedom Collection |
subjects | Composite materials Dual-phase-lagging heat conduction equation Finite element method Homogenization Laplace transformation Multiscale asymptotic method |
title | A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiscale%20parallel%20algorithm%20for%20dual-phase-lagging%20heat%20conduction%20equation%20in%20composite%20materials&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Zhai,%20Fang-Man&rft.date=2021-01-01&rft.volume=381&rft.spage=113024&rft.pages=113024-&rft.artnum=113024&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2020.113024&rft_dat=%3Celsevier_cross%3ES0377042720303150%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-3ce384dca5192f846e5faccfd7977e223b6f324bcb23d38f132cf6de059d14793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |