Loading…

An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet

In this paper, Haar wavelet collocation technique is developed for the solution of Volterra and Volterra–Fredholm fractional integro-differential equations. The Haar technique reduces the given equations to a system of linear algebraic equations. The derived system is then solved by Gauss eliminatio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2021-01, Vol.381, p.113028, Article 113028
Main Authors: Amin, Rohul, Shah, Kamal, Asif, Muhammad, Khan, Imran, Ullah, Faheem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-281b204ed95235a5ab3fe88bb273e64b902fbc344d1d2799af95b001a8e025dc3
cites cdi_FETCH-LOGICAL-c297t-281b204ed95235a5ab3fe88bb273e64b902fbc344d1d2799af95b001a8e025dc3
container_end_page
container_issue
container_start_page 113028
container_title Journal of computational and applied mathematics
container_volume 381
creator Amin, Rohul
Shah, Kamal
Asif, Muhammad
Khan, Imran
Ullah, Faheem
description In this paper, Haar wavelet collocation technique is developed for the solution of Volterra and Volterra–Fredholm fractional integro-differential equations. The Haar technique reduces the given equations to a system of linear algebraic equations. The derived system is then solved by Gauss elimination method. Some numerical examples are taken from literature for checking the validation and convergence of the proposed method. The maximum absolute errors are compared with the exact solution. The maximum absolute and mean square root errors for different number of collocation points are calculated. The results show that Haar method is efficient for solving these equations. The experimental rates of convergence for different number of collocation point is calculated which is approximately equal to 2. Fractional derivative is described in the Caputo sense. All algorithms for the developed method are implemented in MATLAB (R2009b) software.
doi_str_mv 10.1016/j.cam.2020.113028
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2020_113028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042720303198</els_id><sourcerecordid>S0377042720303198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-281b204ed95235a5ab3fe88bb273e64b902fbc344d1d2799af95b001a8e025dc3</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqXwAdz8AylrJ6ljcaoqoEiVuMDZ2jjr4pLEYKdF_D2JypnT7s5qRqPH2K2AhQCxvNsvLHYLCXK8RQ6yOmMzUSmdCaWqczaDXKkMCqku2VVKewBYalHM2Meq5-Sct576gWO7C9EP7x13IfL-0FH0FlueQnsYfOh5cNxFtNM-yr4faBdD1njnKI4BfhTp64DTP_GjR75BjPwbj9TScM0uHLaJbv7mnL09PryuN9n25el5vdpmVmo1ZLIStYSCGl3KvMQS69xRVdW1VDkti1qDdLXNi6IRjVRao9NlDSCwIpBlY_M5E6dcG0NKkZz5jL7D-GMEmImW2ZuRlplomROt0XN_8tBY7OgpmjQhsdT4SHYwTfD_uH8B-UN0hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet</title><source>ScienceDirect Freedom Collection</source><creator>Amin, Rohul ; Shah, Kamal ; Asif, Muhammad ; Khan, Imran ; Ullah, Faheem</creator><creatorcontrib>Amin, Rohul ; Shah, Kamal ; Asif, Muhammad ; Khan, Imran ; Ullah, Faheem</creatorcontrib><description>In this paper, Haar wavelet collocation technique is developed for the solution of Volterra and Volterra–Fredholm fractional integro-differential equations. The Haar technique reduces the given equations to a system of linear algebraic equations. The derived system is then solved by Gauss elimination method. Some numerical examples are taken from literature for checking the validation and convergence of the proposed method. The maximum absolute errors are compared with the exact solution. The maximum absolute and mean square root errors for different number of collocation points are calculated. The results show that Haar method is efficient for solving these equations. The experimental rates of convergence for different number of collocation point is calculated which is approximately equal to 2. Fractional derivative is described in the Caputo sense. All algorithms for the developed method are implemented in MATLAB (R2009b) software.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2020.113028</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Caputo derivative ; FIDEs ; Haar wavelet</subject><ispartof>Journal of computational and applied mathematics, 2021-01, Vol.381, p.113028, Article 113028</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-281b204ed95235a5ab3fe88bb273e64b902fbc344d1d2799af95b001a8e025dc3</citedby><cites>FETCH-LOGICAL-c297t-281b204ed95235a5ab3fe88bb273e64b902fbc344d1d2799af95b001a8e025dc3</cites><orcidid>0000-0002-8851-4844 ; 0000-0003-4694-7518 ; 0000-0002-7635-621X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Amin, Rohul</creatorcontrib><creatorcontrib>Shah, Kamal</creatorcontrib><creatorcontrib>Asif, Muhammad</creatorcontrib><creatorcontrib>Khan, Imran</creatorcontrib><creatorcontrib>Ullah, Faheem</creatorcontrib><title>An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet</title><title>Journal of computational and applied mathematics</title><description>In this paper, Haar wavelet collocation technique is developed for the solution of Volterra and Volterra–Fredholm fractional integro-differential equations. The Haar technique reduces the given equations to a system of linear algebraic equations. The derived system is then solved by Gauss elimination method. Some numerical examples are taken from literature for checking the validation and convergence of the proposed method. The maximum absolute errors are compared with the exact solution. The maximum absolute and mean square root errors for different number of collocation points are calculated. The results show that Haar method is efficient for solving these equations. The experimental rates of convergence for different number of collocation point is calculated which is approximately equal to 2. Fractional derivative is described in the Caputo sense. All algorithms for the developed method are implemented in MATLAB (R2009b) software.</description><subject>Caputo derivative</subject><subject>FIDEs</subject><subject>Haar wavelet</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAQRC0EEqXwAdz8AylrJ6ljcaoqoEiVuMDZ2jjr4pLEYKdF_D2JypnT7s5qRqPH2K2AhQCxvNsvLHYLCXK8RQ6yOmMzUSmdCaWqczaDXKkMCqku2VVKewBYalHM2Meq5-Sct576gWO7C9EP7x13IfL-0FH0FlueQnsYfOh5cNxFtNM-yr4faBdD1njnKI4BfhTp64DTP_GjR75BjPwbj9TScM0uHLaJbv7mnL09PryuN9n25el5vdpmVmo1ZLIStYSCGl3KvMQS69xRVdW1VDkti1qDdLXNi6IRjVRao9NlDSCwIpBlY_M5E6dcG0NKkZz5jL7D-GMEmImW2ZuRlplomROt0XN_8tBY7OgpmjQhsdT4SHYwTfD_uH8B-UN0hg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Amin, Rohul</creator><creator>Shah, Kamal</creator><creator>Asif, Muhammad</creator><creator>Khan, Imran</creator><creator>Ullah, Faheem</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8851-4844</orcidid><orcidid>https://orcid.org/0000-0003-4694-7518</orcidid><orcidid>https://orcid.org/0000-0002-7635-621X</orcidid></search><sort><creationdate>20210101</creationdate><title>An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet</title><author>Amin, Rohul ; Shah, Kamal ; Asif, Muhammad ; Khan, Imran ; Ullah, Faheem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-281b204ed95235a5ab3fe88bb273e64b902fbc344d1d2799af95b001a8e025dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Caputo derivative</topic><topic>FIDEs</topic><topic>Haar wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Rohul</creatorcontrib><creatorcontrib>Shah, Kamal</creatorcontrib><creatorcontrib>Asif, Muhammad</creatorcontrib><creatorcontrib>Khan, Imran</creatorcontrib><creatorcontrib>Ullah, Faheem</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Rohul</au><au>Shah, Kamal</au><au>Asif, Muhammad</au><au>Khan, Imran</au><au>Ullah, Faheem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>381</volume><spage>113028</spage><pages>113028-</pages><artnum>113028</artnum><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this paper, Haar wavelet collocation technique is developed for the solution of Volterra and Volterra–Fredholm fractional integro-differential equations. The Haar technique reduces the given equations to a system of linear algebraic equations. The derived system is then solved by Gauss elimination method. Some numerical examples are taken from literature for checking the validation and convergence of the proposed method. The maximum absolute errors are compared with the exact solution. The maximum absolute and mean square root errors for different number of collocation points are calculated. The results show that Haar method is efficient for solving these equations. The experimental rates of convergence for different number of collocation point is calculated which is approximately equal to 2. Fractional derivative is described in the Caputo sense. All algorithms for the developed method are implemented in MATLAB (R2009b) software.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2020.113028</doi><orcidid>https://orcid.org/0000-0002-8851-4844</orcidid><orcidid>https://orcid.org/0000-0003-4694-7518</orcidid><orcidid>https://orcid.org/0000-0002-7635-621X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2021-01, Vol.381, p.113028, Article 113028
issn 0377-0427
1879-1778
language eng
recordid cdi_crossref_primary_10_1016_j_cam_2020_113028
source ScienceDirect Freedom Collection
subjects Caputo derivative
FIDEs
Haar wavelet
title An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20algorithm%20for%20numerical%20solution%20of%20fractional%20integro-differential%20equations%20via%20Haar%20wavelet&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Amin,%20Rohul&rft.date=2021-01-01&rft.volume=381&rft.spage=113028&rft.pages=113028-&rft.artnum=113028&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2020.113028&rft_dat=%3Celsevier_cross%3ES0377042720303198%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-281b204ed95235a5ab3fe88bb273e64b902fbc344d1d2799af95b001a8e025dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true