Loading…
An enumerative formula for the spherical cap discrepancy
The spherical cap discrepancy is a widely used measure for how uniformly a sample of points on the sphere is distributed. Being hard to compute, this discrepancy measure is typically replaced by some lower or upper estimates when designing optimal sampling schemes for the uniform distribution on the...
Saved in:
Published in: | Journal of computational and applied mathematics 2021-07, Vol.390, p.113409, Article 113409 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-c26c2f7377147dd126ea9ce0002f3a76f91d968e495c1c609899c3ef5bc4c4113 |
container_end_page | |
container_issue | |
container_start_page | 113409 |
container_title | Journal of computational and applied mathematics |
container_volume | 390 |
creator | Heitsch, Holger Henrion, René |
description | The spherical cap discrepancy is a widely used measure for how uniformly a sample of points on the sphere is distributed. Being hard to compute, this discrepancy measure is typically replaced by some lower or upper estimates when designing optimal sampling schemes for the uniform distribution on the sphere. In this paper, we provide a fully explicit, easy to implement enumerative formula for the spherical cap discrepancy. Not surprisingly, this formula is of combinatorial nature and, thus, its application is limited to spheres of small dimension and moderate sample sizes. Nonetheless, it may serve as a useful calibrating tool for testing the efficiency of sampling schemes and its explicit character might be useful also to establish necessary optimality conditions when minimizing the discrepancy with respect to a sample of given size. |
doi_str_mv | 10.1016/j.cam.2021.113409 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2021_113409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042721000285</els_id><sourcerecordid>S0377042721000285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-c26c2f7377147dd126ea9ce0002f3a76f91d968e495c1c609899c3ef5bc4c4113</originalsourceid><addsrcrecordid>eNp9j81KAzEUhYMoWKsP4G5eYMbcTJpMcFWKf1Bwo-sQ79zQlPkjmRb69qbUtZt7Vt8592PsEXgFHNTTvkLXV4ILqABqyc0VW0CjTQlaN9dswWutSy6FvmV3Ke0558qAXLBmPRQ0HHqKbg5HKvwY-0PnzlnMOyrStKMY0HUFuqloQ8JIkxvwdM9uvOsSPfzlkn2_vnxt3svt59vHZr0tURgx56tQeJ3XQeq2BaHIGaS8L3zttPIGWqMakmaFgIqbxhisya9-UKLMKksGl16MY0qRvJ1i6F08WeD2rG73Nqvbs7q9qGfm-cJQfuwYKNqEgQakNkTC2bZj-If-BUDzYJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An enumerative formula for the spherical cap discrepancy</title><source>ScienceDirect Freedom Collection</source><creator>Heitsch, Holger ; Henrion, René</creator><creatorcontrib>Heitsch, Holger ; Henrion, René</creatorcontrib><description>The spherical cap discrepancy is a widely used measure for how uniformly a sample of points on the sphere is distributed. Being hard to compute, this discrepancy measure is typically replaced by some lower or upper estimates when designing optimal sampling schemes for the uniform distribution on the sphere. In this paper, we provide a fully explicit, easy to implement enumerative formula for the spherical cap discrepancy. Not surprisingly, this formula is of combinatorial nature and, thus, its application is limited to spheres of small dimension and moderate sample sizes. Nonetheless, it may serve as a useful calibrating tool for testing the efficiency of sampling schemes and its explicit character might be useful also to establish necessary optimality conditions when minimizing the discrepancy with respect to a sample of given size.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2021.113409</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Optimality conditions ; Spherical cap discrepancy ; Uniform distribution on sphere</subject><ispartof>Journal of computational and applied mathematics, 2021-07, Vol.390, p.113409, Article 113409</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-c26c2f7377147dd126ea9ce0002f3a76f91d968e495c1c609899c3ef5bc4c4113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Heitsch, Holger</creatorcontrib><creatorcontrib>Henrion, René</creatorcontrib><title>An enumerative formula for the spherical cap discrepancy</title><title>Journal of computational and applied mathematics</title><description>The spherical cap discrepancy is a widely used measure for how uniformly a sample of points on the sphere is distributed. Being hard to compute, this discrepancy measure is typically replaced by some lower or upper estimates when designing optimal sampling schemes for the uniform distribution on the sphere. In this paper, we provide a fully explicit, easy to implement enumerative formula for the spherical cap discrepancy. Not surprisingly, this formula is of combinatorial nature and, thus, its application is limited to spheres of small dimension and moderate sample sizes. Nonetheless, it may serve as a useful calibrating tool for testing the efficiency of sampling schemes and its explicit character might be useful also to establish necessary optimality conditions when minimizing the discrepancy with respect to a sample of given size.</description><subject>Optimality conditions</subject><subject>Spherical cap discrepancy</subject><subject>Uniform distribution on sphere</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j81KAzEUhYMoWKsP4G5eYMbcTJpMcFWKf1Bwo-sQ79zQlPkjmRb69qbUtZt7Vt8592PsEXgFHNTTvkLXV4ILqABqyc0VW0CjTQlaN9dswWutSy6FvmV3Ke0558qAXLBmPRQ0HHqKbg5HKvwY-0PnzlnMOyrStKMY0HUFuqloQ8JIkxvwdM9uvOsSPfzlkn2_vnxt3svt59vHZr0tURgx56tQeJ3XQeq2BaHIGaS8L3zttPIGWqMakmaFgIqbxhisya9-UKLMKksGl16MY0qRvJ1i6F08WeD2rG73Nqvbs7q9qGfm-cJQfuwYKNqEgQakNkTC2bZj-If-BUDzYJI</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Heitsch, Holger</creator><creator>Henrion, René</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202107</creationdate><title>An enumerative formula for the spherical cap discrepancy</title><author>Heitsch, Holger ; Henrion, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-c26c2f7377147dd126ea9ce0002f3a76f91d968e495c1c609899c3ef5bc4c4113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Optimality conditions</topic><topic>Spherical cap discrepancy</topic><topic>Uniform distribution on sphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heitsch, Holger</creatorcontrib><creatorcontrib>Henrion, René</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heitsch, Holger</au><au>Henrion, René</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An enumerative formula for the spherical cap discrepancy</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2021-07</date><risdate>2021</risdate><volume>390</volume><spage>113409</spage><pages>113409-</pages><artnum>113409</artnum><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>The spherical cap discrepancy is a widely used measure for how uniformly a sample of points on the sphere is distributed. Being hard to compute, this discrepancy measure is typically replaced by some lower or upper estimates when designing optimal sampling schemes for the uniform distribution on the sphere. In this paper, we provide a fully explicit, easy to implement enumerative formula for the spherical cap discrepancy. Not surprisingly, this formula is of combinatorial nature and, thus, its application is limited to spheres of small dimension and moderate sample sizes. Nonetheless, it may serve as a useful calibrating tool for testing the efficiency of sampling schemes and its explicit character might be useful also to establish necessary optimality conditions when minimizing the discrepancy with respect to a sample of given size.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2021.113409</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2021-07, Vol.390, p.113409, Article 113409 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cam_2021_113409 |
source | ScienceDirect Freedom Collection |
subjects | Optimality conditions Spherical cap discrepancy Uniform distribution on sphere |
title | An enumerative formula for the spherical cap discrepancy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20enumerative%20formula%20for%20the%20spherical%20cap%20discrepancy&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Heitsch,%20Holger&rft.date=2021-07&rft.volume=390&rft.spage=113409&rft.pages=113409-&rft.artnum=113409&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2021.113409&rft_dat=%3Celsevier_cross%3ES0377042721000285%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-c26c2f7377147dd126ea9ce0002f3a76f91d968e495c1c609899c3ef5bc4c4113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |