Loading…

New algorithms for approximation of Bessel transforms with high frequency parameter

Accurate algorithms are proposed for approximation of integrals involving highly oscillatory Bessel function of the first kind over finite and infinite domains. Accordingly, Bessel oscillatory integrals having high oscillatory behavior are transformed into oscillatory integrals with Fourier kernel b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2022-01, Vol.399, p.113705, Article 113705
Main Authors: Zaman, Sakhi, Siraj-ul-Islam, Khan, Muhammad Munib, Ahmad, Imtiaz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3
cites cdi_FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3
container_end_page
container_issue
container_start_page 113705
container_title Journal of computational and applied mathematics
container_volume 399
creator Zaman, Sakhi
Siraj-ul-Islam
Khan, Muhammad Munib
Ahmad, Imtiaz
description Accurate algorithms are proposed for approximation of integrals involving highly oscillatory Bessel function of the first kind over finite and infinite domains. Accordingly, Bessel oscillatory integrals having high oscillatory behavior are transformed into oscillatory integrals with Fourier kernel by using complex line integration technique. The transformed integrals contain an inner non-oscillatory improper integral and an outer highly oscillatory integral. A modified meshfree collocation method with Levin approach is considered to evaluate the transformed oscillatory type integrals numerically. The inner improper complex integrals are evaluated by either Gauss–Laguerre or multi-resolution quadrature. Inherited singularity of the meshfree collocation method at x=0 is treated by a splitting technique. Error estimates of the proposed algorithms are derived theoretically in the inverse powers of ω and verified numerically.
doi_str_mv 10.1016/j.cam.2021.113705
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2021_113705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042721003277</els_id><sourcerecordid>S0377042721003277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4C0vsGsm2TYbPGnRKhQ9qOeQTSZtSre7Jqu1b29KPTuXgeH7h5-PkGtgJTCY3qxLa9qSMw4lgJBsckJGUEtVgJT1KRkxIWXBKi7PyUVKa8bYVEE1Im8vuKNms-xiGFZtor6L1PR97H5Ca4bQbWnn6T2mhBs6RLNNGcjYLtN0FZYr6iN-fuHW7mlvomlxwHhJzrzZJLz622Py8fjwPnsqFq_z59ndorBcyaFwfoIOPdppLTl4V9eKe7BKVcpbUeWD4w0TQkwaiXmYa6ARBpyVrDGAYkzg-NfGLqWIXvcxt457DUwfrOi1zlb0wYo-WsmZ22MGc7HvgFEnG3J9dCGiHbTrwj_pX7-gbTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New algorithms for approximation of Bessel transforms with high frequency parameter</title><source>ScienceDirect Journals</source><creator>Zaman, Sakhi ; Siraj-ul-Islam ; Khan, Muhammad Munib ; Ahmad, Imtiaz</creator><creatorcontrib>Zaman, Sakhi ; Siraj-ul-Islam ; Khan, Muhammad Munib ; Ahmad, Imtiaz</creatorcontrib><description>Accurate algorithms are proposed for approximation of integrals involving highly oscillatory Bessel function of the first kind over finite and infinite domains. Accordingly, Bessel oscillatory integrals having high oscillatory behavior are transformed into oscillatory integrals with Fourier kernel by using complex line integration technique. The transformed integrals contain an inner non-oscillatory improper integral and an outer highly oscillatory integral. A modified meshfree collocation method with Levin approach is considered to evaluate the transformed oscillatory type integrals numerically. The inner improper complex integrals are evaluated by either Gauss–Laguerre or multi-resolution quadrature. Inherited singularity of the meshfree collocation method at x=0 is treated by a splitting technique. Error estimates of the proposed algorithms are derived theoretically in the inverse powers of ω and verified numerically.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2021.113705</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bessel integral transforms ; Complex line integration ; Gauss–Laguerre and multi-resolution quadratures ; Meshfree collocation method</subject><ispartof>Journal of computational and applied mathematics, 2022-01, Vol.399, p.113705, Article 113705</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3</citedby><cites>FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3</cites><orcidid>0000-0001-5446-0609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zaman, Sakhi</creatorcontrib><creatorcontrib>Siraj-ul-Islam</creatorcontrib><creatorcontrib>Khan, Muhammad Munib</creatorcontrib><creatorcontrib>Ahmad, Imtiaz</creatorcontrib><title>New algorithms for approximation of Bessel transforms with high frequency parameter</title><title>Journal of computational and applied mathematics</title><description>Accurate algorithms are proposed for approximation of integrals involving highly oscillatory Bessel function of the first kind over finite and infinite domains. Accordingly, Bessel oscillatory integrals having high oscillatory behavior are transformed into oscillatory integrals with Fourier kernel by using complex line integration technique. The transformed integrals contain an inner non-oscillatory improper integral and an outer highly oscillatory integral. A modified meshfree collocation method with Levin approach is considered to evaluate the transformed oscillatory type integrals numerically. The inner improper complex integrals are evaluated by either Gauss–Laguerre or multi-resolution quadrature. Inherited singularity of the meshfree collocation method at x=0 is treated by a splitting technique. Error estimates of the proposed algorithms are derived theoretically in the inverse powers of ω and verified numerically.</description><subject>Bessel integral transforms</subject><subject>Complex line integration</subject><subject>Gauss–Laguerre and multi-resolution quadratures</subject><subject>Meshfree collocation method</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4C0vsGsm2TYbPGnRKhQ9qOeQTSZtSre7Jqu1b29KPTuXgeH7h5-PkGtgJTCY3qxLa9qSMw4lgJBsckJGUEtVgJT1KRkxIWXBKi7PyUVKa8bYVEE1Im8vuKNms-xiGFZtor6L1PR97H5Ca4bQbWnn6T2mhBs6RLNNGcjYLtN0FZYr6iN-fuHW7mlvomlxwHhJzrzZJLz622Py8fjwPnsqFq_z59ndorBcyaFwfoIOPdppLTl4V9eKe7BKVcpbUeWD4w0TQkwaiXmYa6ARBpyVrDGAYkzg-NfGLqWIXvcxt457DUwfrOi1zlb0wYo-WsmZ22MGc7HvgFEnG3J9dCGiHbTrwj_pX7-gbTY</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zaman, Sakhi</creator><creator>Siraj-ul-Islam</creator><creator>Khan, Muhammad Munib</creator><creator>Ahmad, Imtiaz</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5446-0609</orcidid></search><sort><creationdate>20220101</creationdate><title>New algorithms for approximation of Bessel transforms with high frequency parameter</title><author>Zaman, Sakhi ; Siraj-ul-Islam ; Khan, Muhammad Munib ; Ahmad, Imtiaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bessel integral transforms</topic><topic>Complex line integration</topic><topic>Gauss–Laguerre and multi-resolution quadratures</topic><topic>Meshfree collocation method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaman, Sakhi</creatorcontrib><creatorcontrib>Siraj-ul-Islam</creatorcontrib><creatorcontrib>Khan, Muhammad Munib</creatorcontrib><creatorcontrib>Ahmad, Imtiaz</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaman, Sakhi</au><au>Siraj-ul-Islam</au><au>Khan, Muhammad Munib</au><au>Ahmad, Imtiaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New algorithms for approximation of Bessel transforms with high frequency parameter</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>399</volume><spage>113705</spage><pages>113705-</pages><artnum>113705</artnum><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>Accurate algorithms are proposed for approximation of integrals involving highly oscillatory Bessel function of the first kind over finite and infinite domains. Accordingly, Bessel oscillatory integrals having high oscillatory behavior are transformed into oscillatory integrals with Fourier kernel by using complex line integration technique. The transformed integrals contain an inner non-oscillatory improper integral and an outer highly oscillatory integral. A modified meshfree collocation method with Levin approach is considered to evaluate the transformed oscillatory type integrals numerically. The inner improper complex integrals are evaluated by either Gauss–Laguerre or multi-resolution quadrature. Inherited singularity of the meshfree collocation method at x=0 is treated by a splitting technique. Error estimates of the proposed algorithms are derived theoretically in the inverse powers of ω and verified numerically.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2021.113705</doi><orcidid>https://orcid.org/0000-0001-5446-0609</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2022-01, Vol.399, p.113705, Article 113705
issn 0377-0427
1879-1778
language eng
recordid cdi_crossref_primary_10_1016_j_cam_2021_113705
source ScienceDirect Journals
subjects Bessel integral transforms
Complex line integration
Gauss–Laguerre and multi-resolution quadratures
Meshfree collocation method
title New algorithms for approximation of Bessel transforms with high frequency parameter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20algorithms%20for%20approximation%20of%20Bessel%20transforms%20with%20high%20frequency%20parameter&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Zaman,%20Sakhi&rft.date=2022-01-01&rft.volume=399&rft.spage=113705&rft.pages=113705-&rft.artnum=113705&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2021.113705&rft_dat=%3Celsevier_cross%3ES0377042721003277%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true