Loading…
New algorithms for approximation of Bessel transforms with high frequency parameter
Accurate algorithms are proposed for approximation of integrals involving highly oscillatory Bessel function of the first kind over finite and infinite domains. Accordingly, Bessel oscillatory integrals having high oscillatory behavior are transformed into oscillatory integrals with Fourier kernel b...
Saved in:
Published in: | Journal of computational and applied mathematics 2022-01, Vol.399, p.113705, Article 113705 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3 |
container_end_page | |
container_issue | |
container_start_page | 113705 |
container_title | Journal of computational and applied mathematics |
container_volume | 399 |
creator | Zaman, Sakhi Siraj-ul-Islam Khan, Muhammad Munib Ahmad, Imtiaz |
description | Accurate algorithms are proposed for approximation of integrals involving highly oscillatory Bessel function of the first kind over finite and infinite domains. Accordingly, Bessel oscillatory integrals having high oscillatory behavior are transformed into oscillatory integrals with Fourier kernel by using complex line integration technique. The transformed integrals contain an inner non-oscillatory improper integral and an outer highly oscillatory integral. A modified meshfree collocation method with Levin approach is considered to evaluate the transformed oscillatory type integrals numerically. The inner improper complex integrals are evaluated by either Gauss–Laguerre or multi-resolution quadrature. Inherited singularity of the meshfree collocation method at x=0 is treated by a splitting technique. Error estimates of the proposed algorithms are derived theoretically in the inverse powers of ω and verified numerically. |
doi_str_mv | 10.1016/j.cam.2021.113705 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2021_113705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042721003277</els_id><sourcerecordid>S0377042721003277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4C0vsGsm2TYbPGnRKhQ9qOeQTSZtSre7Jqu1b29KPTuXgeH7h5-PkGtgJTCY3qxLa9qSMw4lgJBsckJGUEtVgJT1KRkxIWXBKi7PyUVKa8bYVEE1Im8vuKNms-xiGFZtor6L1PR97H5Ca4bQbWnn6T2mhBs6RLNNGcjYLtN0FZYr6iN-fuHW7mlvomlxwHhJzrzZJLz622Py8fjwPnsqFq_z59ndorBcyaFwfoIOPdppLTl4V9eKe7BKVcpbUeWD4w0TQkwaiXmYa6ARBpyVrDGAYkzg-NfGLqWIXvcxt457DUwfrOi1zlb0wYo-WsmZ22MGc7HvgFEnG3J9dCGiHbTrwj_pX7-gbTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New algorithms for approximation of Bessel transforms with high frequency parameter</title><source>ScienceDirect Journals</source><creator>Zaman, Sakhi ; Siraj-ul-Islam ; Khan, Muhammad Munib ; Ahmad, Imtiaz</creator><creatorcontrib>Zaman, Sakhi ; Siraj-ul-Islam ; Khan, Muhammad Munib ; Ahmad, Imtiaz</creatorcontrib><description>Accurate algorithms are proposed for approximation of integrals involving highly oscillatory Bessel function of the first kind over finite and infinite domains. Accordingly, Bessel oscillatory integrals having high oscillatory behavior are transformed into oscillatory integrals with Fourier kernel by using complex line integration technique. The transformed integrals contain an inner non-oscillatory improper integral and an outer highly oscillatory integral. A modified meshfree collocation method with Levin approach is considered to evaluate the transformed oscillatory type integrals numerically. The inner improper complex integrals are evaluated by either Gauss–Laguerre or multi-resolution quadrature. Inherited singularity of the meshfree collocation method at x=0 is treated by a splitting technique. Error estimates of the proposed algorithms are derived theoretically in the inverse powers of ω and verified numerically.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2021.113705</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bessel integral transforms ; Complex line integration ; Gauss–Laguerre and multi-resolution quadratures ; Meshfree collocation method</subject><ispartof>Journal of computational and applied mathematics, 2022-01, Vol.399, p.113705, Article 113705</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3</citedby><cites>FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3</cites><orcidid>0000-0001-5446-0609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zaman, Sakhi</creatorcontrib><creatorcontrib>Siraj-ul-Islam</creatorcontrib><creatorcontrib>Khan, Muhammad Munib</creatorcontrib><creatorcontrib>Ahmad, Imtiaz</creatorcontrib><title>New algorithms for approximation of Bessel transforms with high frequency parameter</title><title>Journal of computational and applied mathematics</title><description>Accurate algorithms are proposed for approximation of integrals involving highly oscillatory Bessel function of the first kind over finite and infinite domains. Accordingly, Bessel oscillatory integrals having high oscillatory behavior are transformed into oscillatory integrals with Fourier kernel by using complex line integration technique. The transformed integrals contain an inner non-oscillatory improper integral and an outer highly oscillatory integral. A modified meshfree collocation method with Levin approach is considered to evaluate the transformed oscillatory type integrals numerically. The inner improper complex integrals are evaluated by either Gauss–Laguerre or multi-resolution quadrature. Inherited singularity of the meshfree collocation method at x=0 is treated by a splitting technique. Error estimates of the proposed algorithms are derived theoretically in the inverse powers of ω and verified numerically.</description><subject>Bessel integral transforms</subject><subject>Complex line integration</subject><subject>Gauss–Laguerre and multi-resolution quadratures</subject><subject>Meshfree collocation method</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4C0vsGsm2TYbPGnRKhQ9qOeQTSZtSre7Jqu1b29KPTuXgeH7h5-PkGtgJTCY3qxLa9qSMw4lgJBsckJGUEtVgJT1KRkxIWXBKi7PyUVKa8bYVEE1Im8vuKNms-xiGFZtor6L1PR97H5Ca4bQbWnn6T2mhBs6RLNNGcjYLtN0FZYr6iN-fuHW7mlvomlxwHhJzrzZJLz622Py8fjwPnsqFq_z59ndorBcyaFwfoIOPdppLTl4V9eKe7BKVcpbUeWD4w0TQkwaiXmYa6ARBpyVrDGAYkzg-NfGLqWIXvcxt457DUwfrOi1zlb0wYo-WsmZ22MGc7HvgFEnG3J9dCGiHbTrwj_pX7-gbTY</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zaman, Sakhi</creator><creator>Siraj-ul-Islam</creator><creator>Khan, Muhammad Munib</creator><creator>Ahmad, Imtiaz</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5446-0609</orcidid></search><sort><creationdate>20220101</creationdate><title>New algorithms for approximation of Bessel transforms with high frequency parameter</title><author>Zaman, Sakhi ; Siraj-ul-Islam ; Khan, Muhammad Munib ; Ahmad, Imtiaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bessel integral transforms</topic><topic>Complex line integration</topic><topic>Gauss–Laguerre and multi-resolution quadratures</topic><topic>Meshfree collocation method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaman, Sakhi</creatorcontrib><creatorcontrib>Siraj-ul-Islam</creatorcontrib><creatorcontrib>Khan, Muhammad Munib</creatorcontrib><creatorcontrib>Ahmad, Imtiaz</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaman, Sakhi</au><au>Siraj-ul-Islam</au><au>Khan, Muhammad Munib</au><au>Ahmad, Imtiaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New algorithms for approximation of Bessel transforms with high frequency parameter</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>399</volume><spage>113705</spage><pages>113705-</pages><artnum>113705</artnum><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>Accurate algorithms are proposed for approximation of integrals involving highly oscillatory Bessel function of the first kind over finite and infinite domains. Accordingly, Bessel oscillatory integrals having high oscillatory behavior are transformed into oscillatory integrals with Fourier kernel by using complex line integration technique. The transformed integrals contain an inner non-oscillatory improper integral and an outer highly oscillatory integral. A modified meshfree collocation method with Levin approach is considered to evaluate the transformed oscillatory type integrals numerically. The inner improper complex integrals are evaluated by either Gauss–Laguerre or multi-resolution quadrature. Inherited singularity of the meshfree collocation method at x=0 is treated by a splitting technique. Error estimates of the proposed algorithms are derived theoretically in the inverse powers of ω and verified numerically.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2021.113705</doi><orcidid>https://orcid.org/0000-0001-5446-0609</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2022-01, Vol.399, p.113705, Article 113705 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cam_2021_113705 |
source | ScienceDirect Journals |
subjects | Bessel integral transforms Complex line integration Gauss–Laguerre and multi-resolution quadratures Meshfree collocation method |
title | New algorithms for approximation of Bessel transforms with high frequency parameter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20algorithms%20for%20approximation%20of%20Bessel%20transforms%20with%20high%20frequency%20parameter&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Zaman,%20Sakhi&rft.date=2022-01-01&rft.volume=399&rft.spage=113705&rft.pages=113705-&rft.artnum=113705&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2021.113705&rft_dat=%3Celsevier_cross%3ES0377042721003277%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-df5edefec68721fd8892f1c9949fc34fd8d2b03335b7eeee0db1b3a1dc70ba1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |