Loading…

Using incomplete Cholesky factorization to increase the time step in molecular dynamics simulations

Incomplete Cholesky (IC) factorization is widely used as a preconditioner for accelerating the convergence of the conjugate gradient iterative method. The IC factorization has been used in continuum mechanics and other applications that require solutions of elliptic partial differential equations. I...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2022-12, Vol.415, p.114519, Article 114519
Main Authors: Washio, Takumi, Cui, Xiaoke, Kanada, Ryo, Okada, Jun-ichi, Sugiura, Seiryo, Okuno, Yasushi, Takada, Shoji, Hisada, Toshiaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-68e9d49dac722ac6daea6546dfaee4dd738af3e4f7dbf380881a59ee357bf12c3
cites cdi_FETCH-LOGICAL-c340t-68e9d49dac722ac6daea6546dfaee4dd738af3e4f7dbf380881a59ee357bf12c3
container_end_page
container_issue
container_start_page 114519
container_title Journal of computational and applied mathematics
container_volume 415
creator Washio, Takumi
Cui, Xiaoke
Kanada, Ryo
Okada, Jun-ichi
Sugiura, Seiryo
Okuno, Yasushi
Takada, Shoji
Hisada, Toshiaki
description Incomplete Cholesky (IC) factorization is widely used as a preconditioner for accelerating the convergence of the conjugate gradient iterative method. The IC factorization has been used in continuum mechanics and other applications that require solutions of elliptic partial differential equations. In this study, we propose an efficient use of the IC factorization to increase the time step and accelerate molecular dynamics simulations. Previously, we proposed the semi-implicit Hessian correction (SimHec) scheme (Washio et al., 2021) for overdamped Langevin dynamics of polymer simulations. SimHec constructs an approximation of the Hessian matrix by superposing the corrected elemental Hessian matrices associated with the interactions within a limited bandwidth along the polymer chain. The resulting narrow-bandwidth system is efficiently solved by an overlapped skyline solver in parallel. In this study, we integrate the non-local interactions in the polymer chain into the corrected Hessian matrix, and approximate the components of the Hessian matrix outside the narrow bandwidth using the IC factorization. This strategy allows us to use time steps that are 150–1000 times larger than those used in the explicit scheme without a severe increase in the computational load.
doi_str_mv 10.1016/j.cam.2022.114519
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2022_114519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042722002552</els_id><sourcerecordid>S0377042722002552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-68e9d49dac722ac6daea6546dfaee4dd738af3e4f7dbf380881a59ee357bf12c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFv-wK7JJrvJ4kmKX1DwYs9hmkxs6n6UJAr117tLPXsYBl7eZxgeQm45Kznjzd2-tNCXFauqknNZ8_aMLLhWbcGV0udkwYRSBZOVuiRXKe0ZY03L5YLYTQrDBw2DHftDhxnpajd2mD6P1IPNYww_kMM40DzOpYiQkObdNKFHmjIeppj2E2K_OojUHQfog000hX4KZjRdkwsPXcKbv70km6fH99VLsX57fl09rAsrJMtFo7F1snVgVVWBbRwgNLVsnAdE6ZwSGrxA6ZXbeqGZ1hzqFlHUaut5ZcWS8NNdG8eUInpziKGHeDScmdmS2ZvJkpktmZOlibk_MTg99h0wmmQDDhZdiGizcWP4h_4F6ZlzPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using incomplete Cholesky factorization to increase the time step in molecular dynamics simulations</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Washio, Takumi ; Cui, Xiaoke ; Kanada, Ryo ; Okada, Jun-ichi ; Sugiura, Seiryo ; Okuno, Yasushi ; Takada, Shoji ; Hisada, Toshiaki</creator><creatorcontrib>Washio, Takumi ; Cui, Xiaoke ; Kanada, Ryo ; Okada, Jun-ichi ; Sugiura, Seiryo ; Okuno, Yasushi ; Takada, Shoji ; Hisada, Toshiaki</creatorcontrib><description>Incomplete Cholesky (IC) factorization is widely used as a preconditioner for accelerating the convergence of the conjugate gradient iterative method. The IC factorization has been used in continuum mechanics and other applications that require solutions of elliptic partial differential equations. In this study, we propose an efficient use of the IC factorization to increase the time step and accelerate molecular dynamics simulations. Previously, we proposed the semi-implicit Hessian correction (SimHec) scheme (Washio et al., 2021) for overdamped Langevin dynamics of polymer simulations. SimHec constructs an approximation of the Hessian matrix by superposing the corrected elemental Hessian matrices associated with the interactions within a limited bandwidth along the polymer chain. The resulting narrow-bandwidth system is efficiently solved by an overlapped skyline solver in parallel. In this study, we integrate the non-local interactions in the polymer chain into the corrected Hessian matrix, and approximate the components of the Hessian matrix outside the narrow bandwidth using the IC factorization. This strategy allows us to use time steps that are 150–1000 times larger than those used in the explicit scheme without a severe increase in the computational load.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2022.114519</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Incomplete Cholesky factorization ; Iterative refinement ; Molecular dynamics ; Semi-implicit method</subject><ispartof>Journal of computational and applied mathematics, 2022-12, Vol.415, p.114519, Article 114519</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-68e9d49dac722ac6daea6546dfaee4dd738af3e4f7dbf380881a59ee357bf12c3</citedby><cites>FETCH-LOGICAL-c340t-68e9d49dac722ac6daea6546dfaee4dd738af3e4f7dbf380881a59ee357bf12c3</cites><orcidid>0000-0003-0040-2432 ; 0000-0002-2862-9359 ; 0000-0003-3596-4208 ; 0000-0001-5240-2050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Washio, Takumi</creatorcontrib><creatorcontrib>Cui, Xiaoke</creatorcontrib><creatorcontrib>Kanada, Ryo</creatorcontrib><creatorcontrib>Okada, Jun-ichi</creatorcontrib><creatorcontrib>Sugiura, Seiryo</creatorcontrib><creatorcontrib>Okuno, Yasushi</creatorcontrib><creatorcontrib>Takada, Shoji</creatorcontrib><creatorcontrib>Hisada, Toshiaki</creatorcontrib><title>Using incomplete Cholesky factorization to increase the time step in molecular dynamics simulations</title><title>Journal of computational and applied mathematics</title><description>Incomplete Cholesky (IC) factorization is widely used as a preconditioner for accelerating the convergence of the conjugate gradient iterative method. The IC factorization has been used in continuum mechanics and other applications that require solutions of elliptic partial differential equations. In this study, we propose an efficient use of the IC factorization to increase the time step and accelerate molecular dynamics simulations. Previously, we proposed the semi-implicit Hessian correction (SimHec) scheme (Washio et al., 2021) for overdamped Langevin dynamics of polymer simulations. SimHec constructs an approximation of the Hessian matrix by superposing the corrected elemental Hessian matrices associated with the interactions within a limited bandwidth along the polymer chain. The resulting narrow-bandwidth system is efficiently solved by an overlapped skyline solver in parallel. In this study, we integrate the non-local interactions in the polymer chain into the corrected Hessian matrix, and approximate the components of the Hessian matrix outside the narrow bandwidth using the IC factorization. This strategy allows us to use time steps that are 150–1000 times larger than those used in the explicit scheme without a severe increase in the computational load.</description><subject>Incomplete Cholesky factorization</subject><subject>Iterative refinement</subject><subject>Molecular dynamics</subject><subject>Semi-implicit method</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFv-wK7JJrvJ4kmKX1DwYs9hmkxs6n6UJAr117tLPXsYBl7eZxgeQm45Kznjzd2-tNCXFauqknNZ8_aMLLhWbcGV0udkwYRSBZOVuiRXKe0ZY03L5YLYTQrDBw2DHftDhxnpajd2mD6P1IPNYww_kMM40DzOpYiQkObdNKFHmjIeppj2E2K_OojUHQfog000hX4KZjRdkwsPXcKbv70km6fH99VLsX57fl09rAsrJMtFo7F1snVgVVWBbRwgNLVsnAdE6ZwSGrxA6ZXbeqGZ1hzqFlHUaut5ZcWS8NNdG8eUInpziKGHeDScmdmS2ZvJkpktmZOlibk_MTg99h0wmmQDDhZdiGizcWP4h_4F6ZlzPA</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Washio, Takumi</creator><creator>Cui, Xiaoke</creator><creator>Kanada, Ryo</creator><creator>Okada, Jun-ichi</creator><creator>Sugiura, Seiryo</creator><creator>Okuno, Yasushi</creator><creator>Takada, Shoji</creator><creator>Hisada, Toshiaki</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0040-2432</orcidid><orcidid>https://orcid.org/0000-0002-2862-9359</orcidid><orcidid>https://orcid.org/0000-0003-3596-4208</orcidid><orcidid>https://orcid.org/0000-0001-5240-2050</orcidid></search><sort><creationdate>202212</creationdate><title>Using incomplete Cholesky factorization to increase the time step in molecular dynamics simulations</title><author>Washio, Takumi ; Cui, Xiaoke ; Kanada, Ryo ; Okada, Jun-ichi ; Sugiura, Seiryo ; Okuno, Yasushi ; Takada, Shoji ; Hisada, Toshiaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-68e9d49dac722ac6daea6546dfaee4dd738af3e4f7dbf380881a59ee357bf12c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Incomplete Cholesky factorization</topic><topic>Iterative refinement</topic><topic>Molecular dynamics</topic><topic>Semi-implicit method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Washio, Takumi</creatorcontrib><creatorcontrib>Cui, Xiaoke</creatorcontrib><creatorcontrib>Kanada, Ryo</creatorcontrib><creatorcontrib>Okada, Jun-ichi</creatorcontrib><creatorcontrib>Sugiura, Seiryo</creatorcontrib><creatorcontrib>Okuno, Yasushi</creatorcontrib><creatorcontrib>Takada, Shoji</creatorcontrib><creatorcontrib>Hisada, Toshiaki</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Washio, Takumi</au><au>Cui, Xiaoke</au><au>Kanada, Ryo</au><au>Okada, Jun-ichi</au><au>Sugiura, Seiryo</au><au>Okuno, Yasushi</au><au>Takada, Shoji</au><au>Hisada, Toshiaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using incomplete Cholesky factorization to increase the time step in molecular dynamics simulations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2022-12</date><risdate>2022</risdate><volume>415</volume><spage>114519</spage><pages>114519-</pages><artnum>114519</artnum><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>Incomplete Cholesky (IC) factorization is widely used as a preconditioner for accelerating the convergence of the conjugate gradient iterative method. The IC factorization has been used in continuum mechanics and other applications that require solutions of elliptic partial differential equations. In this study, we propose an efficient use of the IC factorization to increase the time step and accelerate molecular dynamics simulations. Previously, we proposed the semi-implicit Hessian correction (SimHec) scheme (Washio et al., 2021) for overdamped Langevin dynamics of polymer simulations. SimHec constructs an approximation of the Hessian matrix by superposing the corrected elemental Hessian matrices associated with the interactions within a limited bandwidth along the polymer chain. The resulting narrow-bandwidth system is efficiently solved by an overlapped skyline solver in parallel. In this study, we integrate the non-local interactions in the polymer chain into the corrected Hessian matrix, and approximate the components of the Hessian matrix outside the narrow bandwidth using the IC factorization. This strategy allows us to use time steps that are 150–1000 times larger than those used in the explicit scheme without a severe increase in the computational load.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2022.114519</doi><orcidid>https://orcid.org/0000-0003-0040-2432</orcidid><orcidid>https://orcid.org/0000-0002-2862-9359</orcidid><orcidid>https://orcid.org/0000-0003-3596-4208</orcidid><orcidid>https://orcid.org/0000-0001-5240-2050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2022-12, Vol.415, p.114519, Article 114519
issn 0377-0427
1879-1778
language eng
recordid cdi_crossref_primary_10_1016_j_cam_2022_114519
source ScienceDirect Freedom Collection 2022-2024
subjects Incomplete Cholesky factorization
Iterative refinement
Molecular dynamics
Semi-implicit method
title Using incomplete Cholesky factorization to increase the time step in molecular dynamics simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20incomplete%20Cholesky%20factorization%20to%20increase%20the%20time%20step%20in%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Washio,%20Takumi&rft.date=2022-12&rft.volume=415&rft.spage=114519&rft.pages=114519-&rft.artnum=114519&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2022.114519&rft_dat=%3Celsevier_cross%3ES0377042722002552%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-68e9d49dac722ac6daea6546dfaee4dd738af3e4f7dbf380881a59ee357bf12c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true