Loading…
Porous-elasticity equations with indefinite damping
In this paper, we consider the one-dimensional porous-elasticity system with indefinite damping mechanism of type given by τ(x) (possibly changing sign) acting only in the equation for the volume fraction and we prove that the system is exponentially stable under particular relationship between coef...
Saved in:
Published in: | Journal of computational and applied mathematics 2023-04, Vol.422, p.114890, Article 114890 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-57027f72a0780f6222f1a3d5851df1db86f5572e8ab81ec3d66de2bd2a7b5f463 |
container_end_page | |
container_issue | |
container_start_page | 114890 |
container_title | Journal of computational and applied mathematics |
container_volume | 422 |
creator | Almeida Júnior, D.S. Santos, M.L. Muñoz Rivera, J.E. dos Santos, M.J. |
description | In this paper, we consider the one-dimensional porous-elasticity system with indefinite damping mechanism of type given by τ(x) (possibly changing sign) acting only in the equation for the volume fraction and we prove that the system is exponentially stable under particular relationship between coefficients of system and provided τ¯=∫0Lτ(x)dx>0 and ‖τ−τ¯‖L2 |
doi_str_mv | 10.1016/j.cam.2022.114890 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2022_114890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042722004885</els_id><sourcerecordid>S0377042722004885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-57027f72a0780f6222f1a3d5851df1db86f5572e8ab81ec3d66de2bd2a7b5f463</originalsourceid><addsrcrecordid>eNp9z01OwzAQhmELgUQpHIBdLpDgcRLbEStU8SdVggWsLccew0RtUmwX1NvTqqxZzeodfQ9j18Ar4CBvhsrZdSW4EBVAozt-wmagVVeCUvqUzXitVMkboc7ZRUoD51x20MxY_TrFaZtKXNmUyVHeFfi1tZmmMRU_lD8LGj0GGilj4e16Q-PHJTsLdpXw6u_O2fvD_dviqVy-PD4v7palE02Xy1ZxoYISlivNgxRCBLC1b3ULPoDvtQxtqwRq22tAV3spPYreC6v6NjSynjM4_nVxSiliMJtIaxt3Brg5qM1g9mpzUJujet_cHhvcD_smjCY5wtGhp4guGz_RP_Uvz2FfwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Porous-elasticity equations with indefinite damping</title><source>ScienceDirect Journals</source><creator>Almeida Júnior, D.S. ; Santos, M.L. ; Muñoz Rivera, J.E. ; dos Santos, M.J.</creator><creatorcontrib>Almeida Júnior, D.S. ; Santos, M.L. ; Muñoz Rivera, J.E. ; dos Santos, M.J.</creatorcontrib><description>In this paper, we consider the one-dimensional porous-elasticity system with indefinite damping mechanism of type given by τ(x) (possibly changing sign) acting only in the equation for the volume fraction and we prove that the system is exponentially stable under particular relationship between coefficients of system and provided τ¯=∫0Lτ(x)dx>0 and ‖τ−τ¯‖L2<ϵ for ϵ small enough. The decay rate will be described explicitly for constant damping. Our approach is inspired in the work due to Muñoz Rivera and Racke (Journal of Mathematical Analysis and Applications, 341, 1068–1083. 2008) and we prove that the system has the spectrum determined growth (SDG).</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2022.114890</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Dispersion analysis ; Linear porous-elasticity ; Spectrum determined growth property ; Wave propagation speeds</subject><ispartof>Journal of computational and applied mathematics, 2023-04, Vol.422, p.114890, Article 114890</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-57027f72a0780f6222f1a3d5851df1db86f5572e8ab81ec3d66de2bd2a7b5f463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Almeida Júnior, D.S.</creatorcontrib><creatorcontrib>Santos, M.L.</creatorcontrib><creatorcontrib>Muñoz Rivera, J.E.</creatorcontrib><creatorcontrib>dos Santos, M.J.</creatorcontrib><title>Porous-elasticity equations with indefinite damping</title><title>Journal of computational and applied mathematics</title><description>In this paper, we consider the one-dimensional porous-elasticity system with indefinite damping mechanism of type given by τ(x) (possibly changing sign) acting only in the equation for the volume fraction and we prove that the system is exponentially stable under particular relationship between coefficients of system and provided τ¯=∫0Lτ(x)dx>0 and ‖τ−τ¯‖L2<ϵ for ϵ small enough. The decay rate will be described explicitly for constant damping. Our approach is inspired in the work due to Muñoz Rivera and Racke (Journal of Mathematical Analysis and Applications, 341, 1068–1083. 2008) and we prove that the system has the spectrum determined growth (SDG).</description><subject>Dispersion analysis</subject><subject>Linear porous-elasticity</subject><subject>Spectrum determined growth property</subject><subject>Wave propagation speeds</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9z01OwzAQhmELgUQpHIBdLpDgcRLbEStU8SdVggWsLccew0RtUmwX1NvTqqxZzeodfQ9j18Ar4CBvhsrZdSW4EBVAozt-wmagVVeCUvqUzXitVMkboc7ZRUoD51x20MxY_TrFaZtKXNmUyVHeFfi1tZmmMRU_lD8LGj0GGilj4e16Q-PHJTsLdpXw6u_O2fvD_dviqVy-PD4v7palE02Xy1ZxoYISlivNgxRCBLC1b3ULPoDvtQxtqwRq22tAV3spPYreC6v6NjSynjM4_nVxSiliMJtIaxt3Brg5qM1g9mpzUJujet_cHhvcD_smjCY5wtGhp4guGz_RP_Uvz2FfwA</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Almeida Júnior, D.S.</creator><creator>Santos, M.L.</creator><creator>Muñoz Rivera, J.E.</creator><creator>dos Santos, M.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202304</creationdate><title>Porous-elasticity equations with indefinite damping</title><author>Almeida Júnior, D.S. ; Santos, M.L. ; Muñoz Rivera, J.E. ; dos Santos, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-57027f72a0780f6222f1a3d5851df1db86f5572e8ab81ec3d66de2bd2a7b5f463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dispersion analysis</topic><topic>Linear porous-elasticity</topic><topic>Spectrum determined growth property</topic><topic>Wave propagation speeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida Júnior, D.S.</creatorcontrib><creatorcontrib>Santos, M.L.</creatorcontrib><creatorcontrib>Muñoz Rivera, J.E.</creatorcontrib><creatorcontrib>dos Santos, M.J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida Júnior, D.S.</au><au>Santos, M.L.</au><au>Muñoz Rivera, J.E.</au><au>dos Santos, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous-elasticity equations with indefinite damping</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2023-04</date><risdate>2023</risdate><volume>422</volume><spage>114890</spage><pages>114890-</pages><artnum>114890</artnum><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this paper, we consider the one-dimensional porous-elasticity system with indefinite damping mechanism of type given by τ(x) (possibly changing sign) acting only in the equation for the volume fraction and we prove that the system is exponentially stable under particular relationship between coefficients of system and provided τ¯=∫0Lτ(x)dx>0 and ‖τ−τ¯‖L2<ϵ for ϵ small enough. The decay rate will be described explicitly for constant damping. Our approach is inspired in the work due to Muñoz Rivera and Racke (Journal of Mathematical Analysis and Applications, 341, 1068–1083. 2008) and we prove that the system has the spectrum determined growth (SDG).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2022.114890</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2023-04, Vol.422, p.114890, Article 114890 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cam_2022_114890 |
source | ScienceDirect Journals |
subjects | Dispersion analysis Linear porous-elasticity Spectrum determined growth property Wave propagation speeds |
title | Porous-elasticity equations with indefinite damping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous-elasticity%20equations%20with%20indefinite%20damping&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Almeida%20J%C3%BAnior,%20D.S.&rft.date=2023-04&rft.volume=422&rft.spage=114890&rft.pages=114890-&rft.artnum=114890&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2022.114890&rft_dat=%3Celsevier_cross%3ES0377042722004885%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-57027f72a0780f6222f1a3d5851df1db86f5572e8ab81ec3d66de2bd2a7b5f463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |