Loading…

Porous-elasticity equations with indefinite damping

In this paper, we consider the one-dimensional porous-elasticity system with indefinite damping mechanism of type given by τ(x) (possibly changing sign) acting only in the equation for the volume fraction and we prove that the system is exponentially stable under particular relationship between coef...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2023-04, Vol.422, p.114890, Article 114890
Main Authors: Almeida Júnior, D.S., Santos, M.L., Muñoz Rivera, J.E., dos Santos, M.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c249t-57027f72a0780f6222f1a3d5851df1db86f5572e8ab81ec3d66de2bd2a7b5f463
container_end_page
container_issue
container_start_page 114890
container_title Journal of computational and applied mathematics
container_volume 422
creator Almeida Júnior, D.S.
Santos, M.L.
Muñoz Rivera, J.E.
dos Santos, M.J.
description In this paper, we consider the one-dimensional porous-elasticity system with indefinite damping mechanism of type given by τ(x) (possibly changing sign) acting only in the equation for the volume fraction and we prove that the system is exponentially stable under particular relationship between coefficients of system and provided τ¯=∫0Lτ(x)dx>0 and ‖τ−τ¯‖L2
doi_str_mv 10.1016/j.cam.2022.114890
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2022_114890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042722004885</els_id><sourcerecordid>S0377042722004885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-57027f72a0780f6222f1a3d5851df1db86f5572e8ab81ec3d66de2bd2a7b5f463</originalsourceid><addsrcrecordid>eNp9z01OwzAQhmELgUQpHIBdLpDgcRLbEStU8SdVggWsLccew0RtUmwX1NvTqqxZzeodfQ9j18Ar4CBvhsrZdSW4EBVAozt-wmagVVeCUvqUzXitVMkboc7ZRUoD51x20MxY_TrFaZtKXNmUyVHeFfi1tZmmMRU_lD8LGj0GGilj4e16Q-PHJTsLdpXw6u_O2fvD_dviqVy-PD4v7palE02Xy1ZxoYISlivNgxRCBLC1b3ULPoDvtQxtqwRq22tAV3spPYreC6v6NjSynjM4_nVxSiliMJtIaxt3Brg5qM1g9mpzUJujet_cHhvcD_smjCY5wtGhp4guGz_RP_Uvz2FfwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Porous-elasticity equations with indefinite damping</title><source>ScienceDirect Journals</source><creator>Almeida Júnior, D.S. ; Santos, M.L. ; Muñoz Rivera, J.E. ; dos Santos, M.J.</creator><creatorcontrib>Almeida Júnior, D.S. ; Santos, M.L. ; Muñoz Rivera, J.E. ; dos Santos, M.J.</creatorcontrib><description>In this paper, we consider the one-dimensional porous-elasticity system with indefinite damping mechanism of type given by τ(x) (possibly changing sign) acting only in the equation for the volume fraction and we prove that the system is exponentially stable under particular relationship between coefficients of system and provided τ¯=∫0Lτ(x)dx&gt;0 and ‖τ−τ¯‖L2&lt;ϵ for ϵ small enough. The decay rate will be described explicitly for constant damping. Our approach is inspired in the work due to Muñoz Rivera and Racke (Journal of Mathematical Analysis and Applications, 341, 1068–1083. 2008) and we prove that the system has the spectrum determined growth (SDG).</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2022.114890</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Dispersion analysis ; Linear porous-elasticity ; Spectrum determined growth property ; Wave propagation speeds</subject><ispartof>Journal of computational and applied mathematics, 2023-04, Vol.422, p.114890, Article 114890</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-57027f72a0780f6222f1a3d5851df1db86f5572e8ab81ec3d66de2bd2a7b5f463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Almeida Júnior, D.S.</creatorcontrib><creatorcontrib>Santos, M.L.</creatorcontrib><creatorcontrib>Muñoz Rivera, J.E.</creatorcontrib><creatorcontrib>dos Santos, M.J.</creatorcontrib><title>Porous-elasticity equations with indefinite damping</title><title>Journal of computational and applied mathematics</title><description>In this paper, we consider the one-dimensional porous-elasticity system with indefinite damping mechanism of type given by τ(x) (possibly changing sign) acting only in the equation for the volume fraction and we prove that the system is exponentially stable under particular relationship between coefficients of system and provided τ¯=∫0Lτ(x)dx&gt;0 and ‖τ−τ¯‖L2&lt;ϵ for ϵ small enough. The decay rate will be described explicitly for constant damping. Our approach is inspired in the work due to Muñoz Rivera and Racke (Journal of Mathematical Analysis and Applications, 341, 1068–1083. 2008) and we prove that the system has the spectrum determined growth (SDG).</description><subject>Dispersion analysis</subject><subject>Linear porous-elasticity</subject><subject>Spectrum determined growth property</subject><subject>Wave propagation speeds</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9z01OwzAQhmELgUQpHIBdLpDgcRLbEStU8SdVggWsLccew0RtUmwX1NvTqqxZzeodfQ9j18Ar4CBvhsrZdSW4EBVAozt-wmagVVeCUvqUzXitVMkboc7ZRUoD51x20MxY_TrFaZtKXNmUyVHeFfi1tZmmMRU_lD8LGj0GGilj4e16Q-PHJTsLdpXw6u_O2fvD_dviqVy-PD4v7palE02Xy1ZxoYISlivNgxRCBLC1b3ULPoDvtQxtqwRq22tAV3spPYreC6v6NjSynjM4_nVxSiliMJtIaxt3Brg5qM1g9mpzUJujet_cHhvcD_smjCY5wtGhp4guGz_RP_Uvz2FfwA</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Almeida Júnior, D.S.</creator><creator>Santos, M.L.</creator><creator>Muñoz Rivera, J.E.</creator><creator>dos Santos, M.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202304</creationdate><title>Porous-elasticity equations with indefinite damping</title><author>Almeida Júnior, D.S. ; Santos, M.L. ; Muñoz Rivera, J.E. ; dos Santos, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-57027f72a0780f6222f1a3d5851df1db86f5572e8ab81ec3d66de2bd2a7b5f463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dispersion analysis</topic><topic>Linear porous-elasticity</topic><topic>Spectrum determined growth property</topic><topic>Wave propagation speeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida Júnior, D.S.</creatorcontrib><creatorcontrib>Santos, M.L.</creatorcontrib><creatorcontrib>Muñoz Rivera, J.E.</creatorcontrib><creatorcontrib>dos Santos, M.J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida Júnior, D.S.</au><au>Santos, M.L.</au><au>Muñoz Rivera, J.E.</au><au>dos Santos, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous-elasticity equations with indefinite damping</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2023-04</date><risdate>2023</risdate><volume>422</volume><spage>114890</spage><pages>114890-</pages><artnum>114890</artnum><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this paper, we consider the one-dimensional porous-elasticity system with indefinite damping mechanism of type given by τ(x) (possibly changing sign) acting only in the equation for the volume fraction and we prove that the system is exponentially stable under particular relationship between coefficients of system and provided τ¯=∫0Lτ(x)dx&gt;0 and ‖τ−τ¯‖L2&lt;ϵ for ϵ small enough. The decay rate will be described explicitly for constant damping. Our approach is inspired in the work due to Muñoz Rivera and Racke (Journal of Mathematical Analysis and Applications, 341, 1068–1083. 2008) and we prove that the system has the spectrum determined growth (SDG).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2022.114890</doi></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2023-04, Vol.422, p.114890, Article 114890
issn 0377-0427
1879-1778
language eng
recordid cdi_crossref_primary_10_1016_j_cam_2022_114890
source ScienceDirect Journals
subjects Dispersion analysis
Linear porous-elasticity
Spectrum determined growth property
Wave propagation speeds
title Porous-elasticity equations with indefinite damping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous-elasticity%20equations%20with%20indefinite%20damping&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Almeida%20J%C3%BAnior,%20D.S.&rft.date=2023-04&rft.volume=422&rft.spage=114890&rft.pages=114890-&rft.artnum=114890&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2022.114890&rft_dat=%3Celsevier_cross%3ES0377042722004885%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-57027f72a0780f6222f1a3d5851df1db86f5572e8ab81ec3d66de2bd2a7b5f463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true