Loading…

Optimal point-wise error estimates of two conservative finite difference schemes for the coupled Gross–Pitaevskii equations with angular momentum rotation terms

This paper is concerned with numerical analysis of two finite difference schemes for solving the coupled Gross–Pitaevskii equations with angular momentum rotation terms which model the dynamics of rotating two-component Bose–Einstein condensates. Both schemes are proved to be uniquely solvable and i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2023-06, Vol.425, p.115056, Article 115056
Main Authors: Wang, Tingchun, Wang, Tingfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c179t-38a725fa36be4d6391fd85296090c96212d15d92558acd64b3af8d209391df543
container_end_page
container_issue
container_start_page 115056
container_title Journal of computational and applied mathematics
container_volume 425
creator Wang, Tingchun
Wang, Tingfeng
description This paper is concerned with numerical analysis of two finite difference schemes for solving the coupled Gross–Pitaevskii equations with angular momentum rotation terms which model the dynamics of rotating two-component Bose–Einstein condensates. Both schemes are proved to be uniquely solvable and inherit the conservation laws of mass and energy in the discrete sense. Besides the energy method, the ‘cut-off’ function technique and inductive argument are introduced to establish the optimal error estimates of the numerical methods without any requirement on the grid-ratio or initial values. The convergence order of the numerical solutions to the exact solutions is proved to be of O(τ2+h2) with time-step τ and mesh size h. Several numerical results are reported to validate the error estimates and conservation laws.
doi_str_mv 10.1016/j.cam.2022.115056
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2022_115056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042722006549</els_id><sourcerecordid>S0377042722006549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-38a725fa36be4d6391fd85296090c96212d15d92558acd64b3af8d209391df543</originalsourceid><addsrcrecordid>eNp9kDtOAzEURS0EEiGwADpvYILt-VpUKIKAFCkUUFuO_UwcMuNgexLRsQd2wNJYCR5CTfWKe8_V00HokpIJJbS6Wk-UbCeMMDahtCRldYRGtKl5Ruu6OUYjktd1RgpWn6KzENaEkIrTYoS-FttoW7nBW2e7mO1tAAzeO48hDEGEgJ3Bce-wcl0Av5PR7gAb29kIWFtjwEOnAAe1gja1TWLjClK9325A45l3IXx_fD7aKGEXXq3F8NanlTSH9zausOxe-o30uHUtdLFvsXfxN8cRfBvO0YmRmwAXf3eMnu9un6b32Xwxe5jezDNFax6zvJE1K43MqyUUuso5NbopGa8IJ4pXjDJNS81ZWTZS6apY5tI0mhGemtqURT5G9LCrho89GLH1yYB_F5SIQbJYiyRZDJLFQXJirg8MpMd2FrwIyg46tPWgotDO_kP_ABGeioA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal point-wise error estimates of two conservative finite difference schemes for the coupled Gross–Pitaevskii equations with angular momentum rotation terms</title><source>ScienceDirect Journals</source><creator>Wang, Tingchun ; Wang, Tingfeng</creator><creatorcontrib>Wang, Tingchun ; Wang, Tingfeng</creatorcontrib><description>This paper is concerned with numerical analysis of two finite difference schemes for solving the coupled Gross–Pitaevskii equations with angular momentum rotation terms which model the dynamics of rotating two-component Bose–Einstein condensates. Both schemes are proved to be uniquely solvable and inherit the conservation laws of mass and energy in the discrete sense. Besides the energy method, the ‘cut-off’ function technique and inductive argument are introduced to establish the optimal error estimates of the numerical methods without any requirement on the grid-ratio or initial values. The convergence order of the numerical solutions to the exact solutions is proved to be of O(τ2+h2) with time-step τ and mesh size h. Several numerical results are reported to validate the error estimates and conservation laws.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2022.115056</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Coupled Gross–Pitaevskii equations with angular momentum rotation terms ; Finite difference method ; Mass and energy conservation ; Optimal error estimate ; Unconditional convergence</subject><ispartof>Journal of computational and applied mathematics, 2023-06, Vol.425, p.115056, Article 115056</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-38a725fa36be4d6391fd85296090c96212d15d92558acd64b3af8d209391df543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Tingchun</creatorcontrib><creatorcontrib>Wang, Tingfeng</creatorcontrib><title>Optimal point-wise error estimates of two conservative finite difference schemes for the coupled Gross–Pitaevskii equations with angular momentum rotation terms</title><title>Journal of computational and applied mathematics</title><description>This paper is concerned with numerical analysis of two finite difference schemes for solving the coupled Gross–Pitaevskii equations with angular momentum rotation terms which model the dynamics of rotating two-component Bose–Einstein condensates. Both schemes are proved to be uniquely solvable and inherit the conservation laws of mass and energy in the discrete sense. Besides the energy method, the ‘cut-off’ function technique and inductive argument are introduced to establish the optimal error estimates of the numerical methods without any requirement on the grid-ratio or initial values. The convergence order of the numerical solutions to the exact solutions is proved to be of O(τ2+h2) with time-step τ and mesh size h. Several numerical results are reported to validate the error estimates and conservation laws.</description><subject>Coupled Gross–Pitaevskii equations with angular momentum rotation terms</subject><subject>Finite difference method</subject><subject>Mass and energy conservation</subject><subject>Optimal error estimate</subject><subject>Unconditional convergence</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDtOAzEURS0EEiGwADpvYILt-VpUKIKAFCkUUFuO_UwcMuNgexLRsQd2wNJYCR5CTfWKe8_V00HokpIJJbS6Wk-UbCeMMDahtCRldYRGtKl5Ruu6OUYjktd1RgpWn6KzENaEkIrTYoS-FttoW7nBW2e7mO1tAAzeO48hDEGEgJ3Bce-wcl0Av5PR7gAb29kIWFtjwEOnAAe1gja1TWLjClK9325A45l3IXx_fD7aKGEXXq3F8NanlTSH9zausOxe-o30uHUtdLFvsXfxN8cRfBvO0YmRmwAXf3eMnu9un6b32Xwxe5jezDNFax6zvJE1K43MqyUUuso5NbopGa8IJ4pXjDJNS81ZWTZS6apY5tI0mhGemtqURT5G9LCrho89GLH1yYB_F5SIQbJYiyRZDJLFQXJirg8MpMd2FrwIyg46tPWgotDO_kP_ABGeioA</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Wang, Tingchun</creator><creator>Wang, Tingfeng</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202306</creationdate><title>Optimal point-wise error estimates of two conservative finite difference schemes for the coupled Gross–Pitaevskii equations with angular momentum rotation terms</title><author>Wang, Tingchun ; Wang, Tingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-38a725fa36be4d6391fd85296090c96212d15d92558acd64b3af8d209391df543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coupled Gross–Pitaevskii equations with angular momentum rotation terms</topic><topic>Finite difference method</topic><topic>Mass and energy conservation</topic><topic>Optimal error estimate</topic><topic>Unconditional convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tingchun</creatorcontrib><creatorcontrib>Wang, Tingfeng</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tingchun</au><au>Wang, Tingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal point-wise error estimates of two conservative finite difference schemes for the coupled Gross–Pitaevskii equations with angular momentum rotation terms</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2023-06</date><risdate>2023</risdate><volume>425</volume><spage>115056</spage><pages>115056-</pages><artnum>115056</artnum><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>This paper is concerned with numerical analysis of two finite difference schemes for solving the coupled Gross–Pitaevskii equations with angular momentum rotation terms which model the dynamics of rotating two-component Bose–Einstein condensates. Both schemes are proved to be uniquely solvable and inherit the conservation laws of mass and energy in the discrete sense. Besides the energy method, the ‘cut-off’ function technique and inductive argument are introduced to establish the optimal error estimates of the numerical methods without any requirement on the grid-ratio or initial values. The convergence order of the numerical solutions to the exact solutions is proved to be of O(τ2+h2) with time-step τ and mesh size h. Several numerical results are reported to validate the error estimates and conservation laws.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2022.115056</doi></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2023-06, Vol.425, p.115056, Article 115056
issn 0377-0427
1879-1778
language eng
recordid cdi_crossref_primary_10_1016_j_cam_2022_115056
source ScienceDirect Journals
subjects Coupled Gross–Pitaevskii equations with angular momentum rotation terms
Finite difference method
Mass and energy conservation
Optimal error estimate
Unconditional convergence
title Optimal point-wise error estimates of two conservative finite difference schemes for the coupled Gross–Pitaevskii equations with angular momentum rotation terms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20point-wise%20error%20estimates%20of%20two%20conservative%20finite%20difference%20schemes%20for%20the%20coupled%20Gross%E2%80%93Pitaevskii%20equations%20with%20angular%20momentum%20rotation%20terms&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Wang,%20Tingchun&rft.date=2023-06&rft.volume=425&rft.spage=115056&rft.pages=115056-&rft.artnum=115056&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2022.115056&rft_dat=%3Celsevier_cross%3ES0377042722006549%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-38a725fa36be4d6391fd85296090c96212d15d92558acd64b3af8d209391df543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true