Loading…
A fourth-order finite difference method for the Allen–Cahn equation
In this study, we present a spatially fourth-order accurate hybrid numerical scheme for the Allen–Cahn (AC) equation in two-dimensional (2D) and three-dimensional (3D) spaces. The proposed hybrid numerical method splits the AC model into nonlinear and linear components using the operator splitting t...
Saved in:
Published in: | Journal of computational and applied mathematics 2025-01, Vol.453, p.116159, Article 116159 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c179t-a9e4df49b123199e1076c7bb99803a078080b611e0bbf4a0e6c0e7ffa46b2553 |
container_end_page | |
container_issue | |
container_start_page | 116159 |
container_title | Journal of computational and applied mathematics |
container_volume | 453 |
creator | Ham, Seokjun Kang, Seungyoon Hwang, Youngjin Lee, Gyeonggyu Kwak, Soobin Jyoti Kim, Junseok |
description | In this study, we present a spatially fourth-order accurate hybrid numerical scheme for the Allen–Cahn (AC) equation in two-dimensional (2D) and three-dimensional (3D) spaces. The proposed hybrid numerical method splits the AC model into nonlinear and linear components using the operator splitting technique. The nonlinear component is solved by using an analytic solution. In 3D space, the linear diffusion term is solved by splitting it into the x-, y-, and z-directional single spatial variable diffusion equations. The fully implicit scheme for temporal difference and the spatially fourth-order finite difference discretization are applied. The system of discrete equations becomes a penta-diagonal matrix that can be directly solved without any iterative techniques. Stability analysis and various computational experiments are performed to verify the numerical convergence and stability of the proposed method in 2D and 3D spaces. Furthermore, we compared the convergence rate, error, and CPU time between the proposed fourth-order and standard second-order schemes. |
doi_str_mv | 10.1016/j.cam.2024.116159 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2024_116159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042724004084</els_id><sourcerecordid>S0377042724004084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-a9e4df49b123199e1076c7bb99803a078080b611e0bbf4a0e6c0e7ffa46b2553</originalsourceid><addsrcrecordid>eNp9z71OwzAQwHEPIFEKD8DmF0i4S1y7FlNVlQ-pEkt3y3bOiqs2AcdFYuMdeEOehFRhZrrl_qf7MXaHUCKgvN-X3h7LCipRIkpc6As2g1qpAkSlrtj1MOwBQGoUM7ZZ8dCfUm6LPjWUeIhdzMSbGAIl6jzxI-W2b8atxHNLfHU4UPfz9b22bcfp_WRz7LsbdhnsYaDbvzlnu8fNbv1cbF-fXtarbeFR6VxYTaIJQjusatSaEJT0yjmtl1BbUEtYgpOIBM4FYYGkB1IhWCFdtVjUc4bTWZ_6YUgUzFuKR5s-DYI5083ejHRzppuJPjYPU0PjXx-Rkhl8PMOamMhn0_Txn_oXtahj9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fourth-order finite difference method for the Allen–Cahn equation</title><source>ScienceDirect Journals</source><creator>Ham, Seokjun ; Kang, Seungyoon ; Hwang, Youngjin ; Lee, Gyeonggyu ; Kwak, Soobin ; Jyoti ; Kim, Junseok</creator><creatorcontrib>Ham, Seokjun ; Kang, Seungyoon ; Hwang, Youngjin ; Lee, Gyeonggyu ; Kwak, Soobin ; Jyoti ; Kim, Junseok</creatorcontrib><description>In this study, we present a spatially fourth-order accurate hybrid numerical scheme for the Allen–Cahn (AC) equation in two-dimensional (2D) and three-dimensional (3D) spaces. The proposed hybrid numerical method splits the AC model into nonlinear and linear components using the operator splitting technique. The nonlinear component is solved by using an analytic solution. In 3D space, the linear diffusion term is solved by splitting it into the x-, y-, and z-directional single spatial variable diffusion equations. The fully implicit scheme for temporal difference and the spatially fourth-order finite difference discretization are applied. The system of discrete equations becomes a penta-diagonal matrix that can be directly solved without any iterative techniques. Stability analysis and various computational experiments are performed to verify the numerical convergence and stability of the proposed method in 2D and 3D spaces. Furthermore, we compared the convergence rate, error, and CPU time between the proposed fourth-order and standard second-order schemes.</description><identifier>ISSN: 0377-0427</identifier><identifier>DOI: 10.1016/j.cam.2024.116159</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Allen–Cahn equation ; Finite difference method ; Fourth-order accurate ; Penta-diagonal matrix</subject><ispartof>Journal of computational and applied mathematics, 2025-01, Vol.453, p.116159, Article 116159</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-a9e4df49b123199e1076c7bb99803a078080b611e0bbf4a0e6c0e7ffa46b2553</cites><orcidid>0000-0002-0484-9189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ham, Seokjun</creatorcontrib><creatorcontrib>Kang, Seungyoon</creatorcontrib><creatorcontrib>Hwang, Youngjin</creatorcontrib><creatorcontrib>Lee, Gyeonggyu</creatorcontrib><creatorcontrib>Kwak, Soobin</creatorcontrib><creatorcontrib>Jyoti</creatorcontrib><creatorcontrib>Kim, Junseok</creatorcontrib><title>A fourth-order finite difference method for the Allen–Cahn equation</title><title>Journal of computational and applied mathematics</title><description>In this study, we present a spatially fourth-order accurate hybrid numerical scheme for the Allen–Cahn (AC) equation in two-dimensional (2D) and three-dimensional (3D) spaces. The proposed hybrid numerical method splits the AC model into nonlinear and linear components using the operator splitting technique. The nonlinear component is solved by using an analytic solution. In 3D space, the linear diffusion term is solved by splitting it into the x-, y-, and z-directional single spatial variable diffusion equations. The fully implicit scheme for temporal difference and the spatially fourth-order finite difference discretization are applied. The system of discrete equations becomes a penta-diagonal matrix that can be directly solved without any iterative techniques. Stability analysis and various computational experiments are performed to verify the numerical convergence and stability of the proposed method in 2D and 3D spaces. Furthermore, we compared the convergence rate, error, and CPU time between the proposed fourth-order and standard second-order schemes.</description><subject>Allen–Cahn equation</subject><subject>Finite difference method</subject><subject>Fourth-order accurate</subject><subject>Penta-diagonal matrix</subject><issn>0377-0427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9z71OwzAQwHEPIFEKD8DmF0i4S1y7FlNVlQ-pEkt3y3bOiqs2AcdFYuMdeEOehFRhZrrl_qf7MXaHUCKgvN-X3h7LCipRIkpc6As2g1qpAkSlrtj1MOwBQGoUM7ZZ8dCfUm6LPjWUeIhdzMSbGAIl6jzxI-W2b8atxHNLfHU4UPfz9b22bcfp_WRz7LsbdhnsYaDbvzlnu8fNbv1cbF-fXtarbeFR6VxYTaIJQjusatSaEJT0yjmtl1BbUEtYgpOIBM4FYYGkB1IhWCFdtVjUc4bTWZ_6YUgUzFuKR5s-DYI5083ejHRzppuJPjYPU0PjXx-Rkhl8PMOamMhn0_Txn_oXtahj9Q</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Ham, Seokjun</creator><creator>Kang, Seungyoon</creator><creator>Hwang, Youngjin</creator><creator>Lee, Gyeonggyu</creator><creator>Kwak, Soobin</creator><creator>Jyoti</creator><creator>Kim, Junseok</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0484-9189</orcidid></search><sort><creationdate>20250101</creationdate><title>A fourth-order finite difference method for the Allen–Cahn equation</title><author>Ham, Seokjun ; Kang, Seungyoon ; Hwang, Youngjin ; Lee, Gyeonggyu ; Kwak, Soobin ; Jyoti ; Kim, Junseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-a9e4df49b123199e1076c7bb99803a078080b611e0bbf4a0e6c0e7ffa46b2553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Allen–Cahn equation</topic><topic>Finite difference method</topic><topic>Fourth-order accurate</topic><topic>Penta-diagonal matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ham, Seokjun</creatorcontrib><creatorcontrib>Kang, Seungyoon</creatorcontrib><creatorcontrib>Hwang, Youngjin</creatorcontrib><creatorcontrib>Lee, Gyeonggyu</creatorcontrib><creatorcontrib>Kwak, Soobin</creatorcontrib><creatorcontrib>Jyoti</creatorcontrib><creatorcontrib>Kim, Junseok</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ham, Seokjun</au><au>Kang, Seungyoon</au><au>Hwang, Youngjin</au><au>Lee, Gyeonggyu</au><au>Kwak, Soobin</au><au>Jyoti</au><au>Kim, Junseok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fourth-order finite difference method for the Allen–Cahn equation</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>453</volume><spage>116159</spage><pages>116159-</pages><artnum>116159</artnum><issn>0377-0427</issn><abstract>In this study, we present a spatially fourth-order accurate hybrid numerical scheme for the Allen–Cahn (AC) equation in two-dimensional (2D) and three-dimensional (3D) spaces. The proposed hybrid numerical method splits the AC model into nonlinear and linear components using the operator splitting technique. The nonlinear component is solved by using an analytic solution. In 3D space, the linear diffusion term is solved by splitting it into the x-, y-, and z-directional single spatial variable diffusion equations. The fully implicit scheme for temporal difference and the spatially fourth-order finite difference discretization are applied. The system of discrete equations becomes a penta-diagonal matrix that can be directly solved without any iterative techniques. Stability analysis and various computational experiments are performed to verify the numerical convergence and stability of the proposed method in 2D and 3D spaces. Furthermore, we compared the convergence rate, error, and CPU time between the proposed fourth-order and standard second-order schemes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2024.116159</doi><orcidid>https://orcid.org/0000-0002-0484-9189</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2025-01, Vol.453, p.116159, Article 116159 |
issn | 0377-0427 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cam_2024_116159 |
source | ScienceDirect Journals |
subjects | Allen–Cahn equation Finite difference method Fourth-order accurate Penta-diagonal matrix |
title | A fourth-order finite difference method for the Allen–Cahn equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fourth-order%20finite%20difference%20method%20for%20the%20Allen%E2%80%93Cahn%20equation&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Ham,%20Seokjun&rft.date=2025-01-01&rft.volume=453&rft.spage=116159&rft.pages=116159-&rft.artnum=116159&rft.issn=0377-0427&rft_id=info:doi/10.1016/j.cam.2024.116159&rft_dat=%3Celsevier_cross%3ES0377042724004084%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-a9e4df49b123199e1076c7bb99803a078080b611e0bbf4a0e6c0e7ffa46b2553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |