Loading…

A fourth-order finite difference method for the Allen–Cahn equation

In this study, we present a spatially fourth-order accurate hybrid numerical scheme for the Allen–Cahn (AC) equation in two-dimensional (2D) and three-dimensional (3D) spaces. The proposed hybrid numerical method splits the AC model into nonlinear and linear components using the operator splitting t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2025-01, Vol.453, p.116159, Article 116159
Main Authors: Ham, Seokjun, Kang, Seungyoon, Hwang, Youngjin, Lee, Gyeonggyu, Kwak, Soobin, Jyoti, Kim, Junseok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c179t-a9e4df49b123199e1076c7bb99803a078080b611e0bbf4a0e6c0e7ffa46b2553
container_end_page
container_issue
container_start_page 116159
container_title Journal of computational and applied mathematics
container_volume 453
creator Ham, Seokjun
Kang, Seungyoon
Hwang, Youngjin
Lee, Gyeonggyu
Kwak, Soobin
Jyoti
Kim, Junseok
description In this study, we present a spatially fourth-order accurate hybrid numerical scheme for the Allen–Cahn (AC) equation in two-dimensional (2D) and three-dimensional (3D) spaces. The proposed hybrid numerical method splits the AC model into nonlinear and linear components using the operator splitting technique. The nonlinear component is solved by using an analytic solution. In 3D space, the linear diffusion term is solved by splitting it into the x-, y-, and z-directional single spatial variable diffusion equations. The fully implicit scheme for temporal difference and the spatially fourth-order finite difference discretization are applied. The system of discrete equations becomes a penta-diagonal matrix that can be directly solved without any iterative techniques. Stability analysis and various computational experiments are performed to verify the numerical convergence and stability of the proposed method in 2D and 3D spaces. Furthermore, we compared the convergence rate, error, and CPU time between the proposed fourth-order and standard second-order schemes.
doi_str_mv 10.1016/j.cam.2024.116159
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cam_2024_116159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042724004084</els_id><sourcerecordid>S0377042724004084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-a9e4df49b123199e1076c7bb99803a078080b611e0bbf4a0e6c0e7ffa46b2553</originalsourceid><addsrcrecordid>eNp9z71OwzAQwHEPIFEKD8DmF0i4S1y7FlNVlQ-pEkt3y3bOiqs2AcdFYuMdeEOehFRhZrrl_qf7MXaHUCKgvN-X3h7LCipRIkpc6As2g1qpAkSlrtj1MOwBQGoUM7ZZ8dCfUm6LPjWUeIhdzMSbGAIl6jzxI-W2b8atxHNLfHU4UPfz9b22bcfp_WRz7LsbdhnsYaDbvzlnu8fNbv1cbF-fXtarbeFR6VxYTaIJQjusatSaEJT0yjmtl1BbUEtYgpOIBM4FYYGkB1IhWCFdtVjUc4bTWZ_6YUgUzFuKR5s-DYI5083ejHRzppuJPjYPU0PjXx-Rkhl8PMOamMhn0_Txn_oXtahj9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fourth-order finite difference method for the Allen–Cahn equation</title><source>ScienceDirect Journals</source><creator>Ham, Seokjun ; Kang, Seungyoon ; Hwang, Youngjin ; Lee, Gyeonggyu ; Kwak, Soobin ; Jyoti ; Kim, Junseok</creator><creatorcontrib>Ham, Seokjun ; Kang, Seungyoon ; Hwang, Youngjin ; Lee, Gyeonggyu ; Kwak, Soobin ; Jyoti ; Kim, Junseok</creatorcontrib><description>In this study, we present a spatially fourth-order accurate hybrid numerical scheme for the Allen–Cahn (AC) equation in two-dimensional (2D) and three-dimensional (3D) spaces. The proposed hybrid numerical method splits the AC model into nonlinear and linear components using the operator splitting technique. The nonlinear component is solved by using an analytic solution. In 3D space, the linear diffusion term is solved by splitting it into the x-, y-, and z-directional single spatial variable diffusion equations. The fully implicit scheme for temporal difference and the spatially fourth-order finite difference discretization are applied. The system of discrete equations becomes a penta-diagonal matrix that can be directly solved without any iterative techniques. Stability analysis and various computational experiments are performed to verify the numerical convergence and stability of the proposed method in 2D and 3D spaces. Furthermore, we compared the convergence rate, error, and CPU time between the proposed fourth-order and standard second-order schemes.</description><identifier>ISSN: 0377-0427</identifier><identifier>DOI: 10.1016/j.cam.2024.116159</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Allen–Cahn equation ; Finite difference method ; Fourth-order accurate ; Penta-diagonal matrix</subject><ispartof>Journal of computational and applied mathematics, 2025-01, Vol.453, p.116159, Article 116159</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-a9e4df49b123199e1076c7bb99803a078080b611e0bbf4a0e6c0e7ffa46b2553</cites><orcidid>0000-0002-0484-9189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ham, Seokjun</creatorcontrib><creatorcontrib>Kang, Seungyoon</creatorcontrib><creatorcontrib>Hwang, Youngjin</creatorcontrib><creatorcontrib>Lee, Gyeonggyu</creatorcontrib><creatorcontrib>Kwak, Soobin</creatorcontrib><creatorcontrib>Jyoti</creatorcontrib><creatorcontrib>Kim, Junseok</creatorcontrib><title>A fourth-order finite difference method for the Allen–Cahn equation</title><title>Journal of computational and applied mathematics</title><description>In this study, we present a spatially fourth-order accurate hybrid numerical scheme for the Allen–Cahn (AC) equation in two-dimensional (2D) and three-dimensional (3D) spaces. The proposed hybrid numerical method splits the AC model into nonlinear and linear components using the operator splitting technique. The nonlinear component is solved by using an analytic solution. In 3D space, the linear diffusion term is solved by splitting it into the x-, y-, and z-directional single spatial variable diffusion equations. The fully implicit scheme for temporal difference and the spatially fourth-order finite difference discretization are applied. The system of discrete equations becomes a penta-diagonal matrix that can be directly solved without any iterative techniques. Stability analysis and various computational experiments are performed to verify the numerical convergence and stability of the proposed method in 2D and 3D spaces. Furthermore, we compared the convergence rate, error, and CPU time between the proposed fourth-order and standard second-order schemes.</description><subject>Allen–Cahn equation</subject><subject>Finite difference method</subject><subject>Fourth-order accurate</subject><subject>Penta-diagonal matrix</subject><issn>0377-0427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9z71OwzAQwHEPIFEKD8DmF0i4S1y7FlNVlQ-pEkt3y3bOiqs2AcdFYuMdeEOehFRhZrrl_qf7MXaHUCKgvN-X3h7LCipRIkpc6As2g1qpAkSlrtj1MOwBQGoUM7ZZ8dCfUm6LPjWUeIhdzMSbGAIl6jzxI-W2b8atxHNLfHU4UPfz9b22bcfp_WRz7LsbdhnsYaDbvzlnu8fNbv1cbF-fXtarbeFR6VxYTaIJQjusatSaEJT0yjmtl1BbUEtYgpOIBM4FYYGkB1IhWCFdtVjUc4bTWZ_6YUgUzFuKR5s-DYI5083ejHRzppuJPjYPU0PjXx-Rkhl8PMOamMhn0_Txn_oXtahj9Q</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Ham, Seokjun</creator><creator>Kang, Seungyoon</creator><creator>Hwang, Youngjin</creator><creator>Lee, Gyeonggyu</creator><creator>Kwak, Soobin</creator><creator>Jyoti</creator><creator>Kim, Junseok</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0484-9189</orcidid></search><sort><creationdate>20250101</creationdate><title>A fourth-order finite difference method for the Allen–Cahn equation</title><author>Ham, Seokjun ; Kang, Seungyoon ; Hwang, Youngjin ; Lee, Gyeonggyu ; Kwak, Soobin ; Jyoti ; Kim, Junseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-a9e4df49b123199e1076c7bb99803a078080b611e0bbf4a0e6c0e7ffa46b2553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Allen–Cahn equation</topic><topic>Finite difference method</topic><topic>Fourth-order accurate</topic><topic>Penta-diagonal matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ham, Seokjun</creatorcontrib><creatorcontrib>Kang, Seungyoon</creatorcontrib><creatorcontrib>Hwang, Youngjin</creatorcontrib><creatorcontrib>Lee, Gyeonggyu</creatorcontrib><creatorcontrib>Kwak, Soobin</creatorcontrib><creatorcontrib>Jyoti</creatorcontrib><creatorcontrib>Kim, Junseok</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ham, Seokjun</au><au>Kang, Seungyoon</au><au>Hwang, Youngjin</au><au>Lee, Gyeonggyu</au><au>Kwak, Soobin</au><au>Jyoti</au><au>Kim, Junseok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fourth-order finite difference method for the Allen–Cahn equation</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>453</volume><spage>116159</spage><pages>116159-</pages><artnum>116159</artnum><issn>0377-0427</issn><abstract>In this study, we present a spatially fourth-order accurate hybrid numerical scheme for the Allen–Cahn (AC) equation in two-dimensional (2D) and three-dimensional (3D) spaces. The proposed hybrid numerical method splits the AC model into nonlinear and linear components using the operator splitting technique. The nonlinear component is solved by using an analytic solution. In 3D space, the linear diffusion term is solved by splitting it into the x-, y-, and z-directional single spatial variable diffusion equations. The fully implicit scheme for temporal difference and the spatially fourth-order finite difference discretization are applied. The system of discrete equations becomes a penta-diagonal matrix that can be directly solved without any iterative techniques. Stability analysis and various computational experiments are performed to verify the numerical convergence and stability of the proposed method in 2D and 3D spaces. Furthermore, we compared the convergence rate, error, and CPU time between the proposed fourth-order and standard second-order schemes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2024.116159</doi><orcidid>https://orcid.org/0000-0002-0484-9189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2025-01, Vol.453, p.116159, Article 116159
issn 0377-0427
language eng
recordid cdi_crossref_primary_10_1016_j_cam_2024_116159
source ScienceDirect Journals
subjects Allen–Cahn equation
Finite difference method
Fourth-order accurate
Penta-diagonal matrix
title A fourth-order finite difference method for the Allen–Cahn equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fourth-order%20finite%20difference%20method%20for%20the%20Allen%E2%80%93Cahn%20equation&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Ham,%20Seokjun&rft.date=2025-01-01&rft.volume=453&rft.spage=116159&rft.pages=116159-&rft.artnum=116159&rft.issn=0377-0427&rft_id=info:doi/10.1016/j.cam.2024.116159&rft_dat=%3Celsevier_cross%3ES0377042724004084%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-a9e4df49b123199e1076c7bb99803a078080b611e0bbf4a0e6c0e7ffa46b2553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true