Loading…

Carbon black pastes as coatings for improving thermal gap-filling materials

Carbon black pastes were found to be effective as coatings for improving the performance of thermal gap-filling materials, including flexible graphite, aluminum and copper. The thermal contact conductance across copper mating surfaces was increased by up to 180%. A fluidic form of carbon black paste...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2006-03, Vol.44 (3), p.435-440
Main Authors: Leong, Chia-Ken, Aoyagi, Yasuhiro, Chung, D.D.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon black pastes were found to be effective as coatings for improving the performance of thermal gap-filling materials, including flexible graphite, aluminum and copper. The thermal contact conductance across copper mating surfaces was increased by up to 180%. A fluidic form of carbon black paste (based on polyethylene glycol) was more effective than a thixotropic form (based on polyol esters). The carbon black pastes were much more effective as coatings than a commercial silver paste. With a carbon black paste coating, aluminum foil (7 μm thick) was a superior gap-filling material compared to similarly coated flexible graphite (130 μm thick). However, without a coating, flexible graphite was superior to aluminum. Commercial silicone-based gap-filling materials were inferior to flexible graphite or aluminum (whether coated or not).
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2005.09.002