Loading…

The effects of CNT type, alignment and dopants on piezoresistance in CNT fibres

Carbon nanotube fibres (CNTF) are piezoresistive, hence heralded as deformation sensors in applications ranging from flexible touch sensors to artificial skins and robotics. This work studies the piezoresistive behaviour of a wide range of CNT fibres from different sources, processing routes and mic...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2025-01, Vol.232, p.119810, Article 119810
Main Authors: Mikhalchan, Anastasiia, Labordet Álvarez, Ángel Víctor, Zarzoso, Moisés, González, Carlos, Vilatela, Juan J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c185t-8bfb092f318f2542aa3241ac0aff69c0338366b709c4abe08a2ff54dcfd528583
container_end_page
container_issue
container_start_page 119810
container_title Carbon (New York)
container_volume 232
creator Mikhalchan, Anastasiia
Labordet Álvarez, Ángel Víctor
Zarzoso, Moisés
González, Carlos
Vilatela, Juan J.
description Carbon nanotube fibres (CNTF) are piezoresistive, hence heralded as deformation sensors in applications ranging from flexible touch sensors to artificial skins and robotics. This work studies the piezoresistive behaviour of a wide range of CNT fibres from different sources, processing routes and microstructures. It provides a unifying view of the factors controlling piezoresistance in CNT fibres and related nanocarbon networks. We clarify the role of alignment and concentration of dopants and the constituent CNT type, demonstrating that the origin of piezoresistance in aligned fibres is the direct deformation of the constituent nanotubes, therefore, it is governed by the bulk modulus and thus the degree of CNT alignment. Doping through intercalation, which does not affect modulus or CNT separation, is detrimental to piezoresistive sensing, reducing the gauge factor proportionally to its decrease in resistivity. Aligned fibres show a quasi-linear piezoresistive response, with a positive change in resistance for all deformation modes applied: axial tension, axial or transverse compression. The axial gauge factor is shown to be proportional to fibre Young's modulus, with values of 2–9 for fibres spun from aerogels and above 30 for undoped fibres spun from liquid crystal solutions, respectively. Piezoresistance is attributed to the formation of internal barriers for conduction between metallic regions, which arise from the heterogeneous stress distribution along individual CNTs inherent in shear lag-type stress transfer. Commercial multifilament CNT yarns with a high degree of alignment and a format amenable for integration in large structures have demonstrated the piezoresistive gauge factors of 4 and sufficient sensitivity at strains below 1 % suitable for structural health monitoring of engineering structural composites. [Display omitted]
doi_str_mv 10.1016/j.carbon.2024.119810
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_carbon_2024_119810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622324010297</els_id><sourcerecordid>S0008622324010297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-8bfb092f318f2542aa3241ac0aff69c0338366b709c4abe08a2ff54dcfd528583</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRb0AifL4Axb-ABLGjwRng4QqXlJFN2VtOc4MuGqdyI6QyteTEtasRjOaczVzGLsWUAoQ9e229C61fSwlSF0K0RgBJ2wBAKaopVRn7Dzn7dRqI_SCrTefyJEI_Zh5T3z5tuHjYcAb7nbhI-4xjtzFjnf94OJxJfIh4HefMIc8uuiRh_hLUWin4SU7JbfLePVXL9j70-Nm-VKs1s-vy4dV4YWpxsK01EIjSQlDstLSOSW1cB4cUd14UMqoum7voPHatQjGSaJKd566SprKqAum51yf-pwTkh1S2Lt0sALsUYTd2lmEPYqws4gJu58xnG77Cphs9gGnL7qQJgW268P_AT-ZN2pb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The effects of CNT type, alignment and dopants on piezoresistance in CNT fibres</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Mikhalchan, Anastasiia ; Labordet Álvarez, Ángel Víctor ; Zarzoso, Moisés ; González, Carlos ; Vilatela, Juan J.</creator><creatorcontrib>Mikhalchan, Anastasiia ; Labordet Álvarez, Ángel Víctor ; Zarzoso, Moisés ; González, Carlos ; Vilatela, Juan J.</creatorcontrib><description>Carbon nanotube fibres (CNTF) are piezoresistive, hence heralded as deformation sensors in applications ranging from flexible touch sensors to artificial skins and robotics. This work studies the piezoresistive behaviour of a wide range of CNT fibres from different sources, processing routes and microstructures. It provides a unifying view of the factors controlling piezoresistance in CNT fibres and related nanocarbon networks. We clarify the role of alignment and concentration of dopants and the constituent CNT type, demonstrating that the origin of piezoresistance in aligned fibres is the direct deformation of the constituent nanotubes, therefore, it is governed by the bulk modulus and thus the degree of CNT alignment. Doping through intercalation, which does not affect modulus or CNT separation, is detrimental to piezoresistive sensing, reducing the gauge factor proportionally to its decrease in resistivity. Aligned fibres show a quasi-linear piezoresistive response, with a positive change in resistance for all deformation modes applied: axial tension, axial or transverse compression. The axial gauge factor is shown to be proportional to fibre Young's modulus, with values of 2–9 for fibres spun from aerogels and above 30 for undoped fibres spun from liquid crystal solutions, respectively. Piezoresistance is attributed to the formation of internal barriers for conduction between metallic regions, which arise from the heterogeneous stress distribution along individual CNTs inherent in shear lag-type stress transfer. Commercial multifilament CNT yarns with a high degree of alignment and a format amenable for integration in large structures have demonstrated the piezoresistive gauge factors of 4 and sufficient sensitivity at strains below 1 % suitable for structural health monitoring of engineering structural composites. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>DOI: 10.1016/j.carbon.2024.119810</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>CNT fibres ; Gauge factor ; Piezoresistive sensors ; Structural composites</subject><ispartof>Carbon (New York), 2025-01, Vol.232, p.119810, Article 119810</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185t-8bfb092f318f2542aa3241ac0aff69c0338366b709c4abe08a2ff54dcfd528583</cites><orcidid>0000-0002-2572-0245 ; 0000-0001-6263-8470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mikhalchan, Anastasiia</creatorcontrib><creatorcontrib>Labordet Álvarez, Ángel Víctor</creatorcontrib><creatorcontrib>Zarzoso, Moisés</creatorcontrib><creatorcontrib>González, Carlos</creatorcontrib><creatorcontrib>Vilatela, Juan J.</creatorcontrib><title>The effects of CNT type, alignment and dopants on piezoresistance in CNT fibres</title><title>Carbon (New York)</title><description>Carbon nanotube fibres (CNTF) are piezoresistive, hence heralded as deformation sensors in applications ranging from flexible touch sensors to artificial skins and robotics. This work studies the piezoresistive behaviour of a wide range of CNT fibres from different sources, processing routes and microstructures. It provides a unifying view of the factors controlling piezoresistance in CNT fibres and related nanocarbon networks. We clarify the role of alignment and concentration of dopants and the constituent CNT type, demonstrating that the origin of piezoresistance in aligned fibres is the direct deformation of the constituent nanotubes, therefore, it is governed by the bulk modulus and thus the degree of CNT alignment. Doping through intercalation, which does not affect modulus or CNT separation, is detrimental to piezoresistive sensing, reducing the gauge factor proportionally to its decrease in resistivity. Aligned fibres show a quasi-linear piezoresistive response, with a positive change in resistance for all deformation modes applied: axial tension, axial or transverse compression. The axial gauge factor is shown to be proportional to fibre Young's modulus, with values of 2–9 for fibres spun from aerogels and above 30 for undoped fibres spun from liquid crystal solutions, respectively. Piezoresistance is attributed to the formation of internal barriers for conduction between metallic regions, which arise from the heterogeneous stress distribution along individual CNTs inherent in shear lag-type stress transfer. Commercial multifilament CNT yarns with a high degree of alignment and a format amenable for integration in large structures have demonstrated the piezoresistive gauge factors of 4 and sufficient sensitivity at strains below 1 % suitable for structural health monitoring of engineering structural composites. [Display omitted]</description><subject>CNT fibres</subject><subject>Gauge factor</subject><subject>Piezoresistive sensors</subject><subject>Structural composites</subject><issn>0008-6223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRb0AifL4Axb-ABLGjwRng4QqXlJFN2VtOc4MuGqdyI6QyteTEtasRjOaczVzGLsWUAoQ9e229C61fSwlSF0K0RgBJ2wBAKaopVRn7Dzn7dRqI_SCrTefyJEI_Zh5T3z5tuHjYcAb7nbhI-4xjtzFjnf94OJxJfIh4HefMIc8uuiRh_hLUWin4SU7JbfLePVXL9j70-Nm-VKs1s-vy4dV4YWpxsK01EIjSQlDstLSOSW1cB4cUd14UMqoum7voPHatQjGSaJKd566SprKqAum51yf-pwTkh1S2Lt0sALsUYTd2lmEPYqws4gJu58xnG77Cphs9gGnL7qQJgW268P_AT-ZN2pb</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Mikhalchan, Anastasiia</creator><creator>Labordet Álvarez, Ángel Víctor</creator><creator>Zarzoso, Moisés</creator><creator>González, Carlos</creator><creator>Vilatela, Juan J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2572-0245</orcidid><orcidid>https://orcid.org/0000-0001-6263-8470</orcidid></search><sort><creationdate>20250115</creationdate><title>The effects of CNT type, alignment and dopants on piezoresistance in CNT fibres</title><author>Mikhalchan, Anastasiia ; Labordet Álvarez, Ángel Víctor ; Zarzoso, Moisés ; González, Carlos ; Vilatela, Juan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-8bfb092f318f2542aa3241ac0aff69c0338366b709c4abe08a2ff54dcfd528583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>CNT fibres</topic><topic>Gauge factor</topic><topic>Piezoresistive sensors</topic><topic>Structural composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhalchan, Anastasiia</creatorcontrib><creatorcontrib>Labordet Álvarez, Ángel Víctor</creatorcontrib><creatorcontrib>Zarzoso, Moisés</creatorcontrib><creatorcontrib>González, Carlos</creatorcontrib><creatorcontrib>Vilatela, Juan J.</creatorcontrib><collection>CrossRef</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhalchan, Anastasiia</au><au>Labordet Álvarez, Ángel Víctor</au><au>Zarzoso, Moisés</au><au>González, Carlos</au><au>Vilatela, Juan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of CNT type, alignment and dopants on piezoresistance in CNT fibres</atitle><jtitle>Carbon (New York)</jtitle><date>2025-01-15</date><risdate>2025</risdate><volume>232</volume><spage>119810</spage><pages>119810-</pages><artnum>119810</artnum><issn>0008-6223</issn><abstract>Carbon nanotube fibres (CNTF) are piezoresistive, hence heralded as deformation sensors in applications ranging from flexible touch sensors to artificial skins and robotics. This work studies the piezoresistive behaviour of a wide range of CNT fibres from different sources, processing routes and microstructures. It provides a unifying view of the factors controlling piezoresistance in CNT fibres and related nanocarbon networks. We clarify the role of alignment and concentration of dopants and the constituent CNT type, demonstrating that the origin of piezoresistance in aligned fibres is the direct deformation of the constituent nanotubes, therefore, it is governed by the bulk modulus and thus the degree of CNT alignment. Doping through intercalation, which does not affect modulus or CNT separation, is detrimental to piezoresistive sensing, reducing the gauge factor proportionally to its decrease in resistivity. Aligned fibres show a quasi-linear piezoresistive response, with a positive change in resistance for all deformation modes applied: axial tension, axial or transverse compression. The axial gauge factor is shown to be proportional to fibre Young's modulus, with values of 2–9 for fibres spun from aerogels and above 30 for undoped fibres spun from liquid crystal solutions, respectively. Piezoresistance is attributed to the formation of internal barriers for conduction between metallic regions, which arise from the heterogeneous stress distribution along individual CNTs inherent in shear lag-type stress transfer. Commercial multifilament CNT yarns with a high degree of alignment and a format amenable for integration in large structures have demonstrated the piezoresistive gauge factors of 4 and sufficient sensitivity at strains below 1 % suitable for structural health monitoring of engineering structural composites. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2024.119810</doi><orcidid>https://orcid.org/0000-0002-2572-0245</orcidid><orcidid>https://orcid.org/0000-0001-6263-8470</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2025-01, Vol.232, p.119810, Article 119810
issn 0008-6223
language eng
recordid cdi_crossref_primary_10_1016_j_carbon_2024_119810
source ScienceDirect Freedom Collection 2022-2024
subjects CNT fibres
Gauge factor
Piezoresistive sensors
Structural composites
title The effects of CNT type, alignment and dopants on piezoresistance in CNT fibres
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20CNT%20type,%20alignment%20and%20dopants%20on%20piezoresistance%20in%20CNT%20fibres&rft.jtitle=Carbon%20(New%20York)&rft.au=Mikhalchan,%20Anastasiia&rft.date=2025-01-15&rft.volume=232&rft.spage=119810&rft.pages=119810-&rft.artnum=119810&rft.issn=0008-6223&rft_id=info:doi/10.1016/j.carbon.2024.119810&rft_dat=%3Celsevier_cross%3ES0008622324010297%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c185t-8bfb092f318f2542aa3241ac0aff69c0338366b709c4abe08a2ff54dcfd528583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true