Loading…

Life cycle of hydroprocessing catalysts and total catalyst management

Hydroprocessing catalysts based on Ni, Co, Mo and W are used in various refinery processing applications where several deactivation mechanisms become of importance (coke formation, active phase sintering, metals deposition, poisoning) in the catalyst's life cycle. The life cycle of commercial h...

Full description

Saved in:
Bibliographic Details
Published in:Catalysis today 2008-01, Vol.130 (2), p.361-373
Main Authors: Eijsbouts, S., Battiston, A.A., van Leerdam, G.C.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydroprocessing catalysts based on Ni, Co, Mo and W are used in various refinery processing applications where several deactivation mechanisms become of importance (coke formation, active phase sintering, metals deposition, poisoning) in the catalyst's life cycle. The life cycle of commercial hydroprocessing catalysts is very complex and includes the catalyst production, sulfidation, use, oxidative regeneration followed by re-sulfidation and reuse or, if reuse is not possible, recycling or disposal. To understand the changes in catalyst properties taking place during a life cycle, the catalyst quality in the different stages can be best monitored by using advanced analytical techniques. The catalyst's life cycle is further complicated by numerous technical, environmental and organizational issues involved. In principle, different companies can be involved in each of the life cycle steps. Leading catalyst manufacturers, together with specialized firms, offer refineries a total catalyst management concept, starting with the purchase of the fresh catalyst and ending with its final recycling or disposal. Total catalyst management includes a broad range of services, ensuring optimal timing during the change-out process, reliable, smooth and safe operations, minimal downtime and maximum catalyst and unit performance.
ISSN:0920-5861
1873-4308
DOI:10.1016/j.cattod.2007.10.112