Loading…
A theoretical study on the alkene insertion step in Rh-Yanphos catalyzed hydroformylation
This paper studied the mechanism of the alkene insertion elementary step in the asymmetric hydroformylation (AHF) catalyzed by RhH(CO)2[(R,S)-Yanphos] using four alkene substrates (CH2=CH- Ph, CH2=CH-Ph-(p)-Me, CH2=CH-C(==O)OCH3 and CH2=CH-OC(=O)-Ph, abbreviated as A1-A4). Interestingly, the equator...
Saved in:
Published in: | Chinese chemical letters 2013-12, Vol.24 (12), p.1083-1086 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studied the mechanism of the alkene insertion elementary step in the asymmetric hydroformylation (AHF) catalyzed by RhH(CO)2[(R,S)-Yanphos] using four alkene substrates (CH2=CH- Ph, CH2=CH-Ph-(p)-Me, CH2=CH-C(==O)OCH3 and CH2=CH-OC(=O)-Ph, abbreviated as A1-A4). Interestingly, the equatorial vertical coordination mode (A mode) with respect to the Rh center was found for AI and A2 but not for A3 and A4, although the equatorial in-plane coordination mode (E mode) was found for A1 -A4. The relative energy of the E mode of the -q2-intermediates is lower than that of the A mode. In the alkene insertion step, Path 1 is more favorable than Path 2 for this system. As for AI and A2, there could be a transformation between 2eq and 2ax. |
---|---|
ISSN: | 1001-8417 1878-5964 |
DOI: | 10.1016/j.cclet.2013.07.004 |