Loading…
Interfacial coupling of sea urchin-like (Mo4O11-MoS2-VO2) promoted electron redistributions for significantly boosted hydrogen evolution reaction
Developing efficient electrocatalysts for hydrogen evolution reaction (HER) is of great importance in contemporary water electrolysis technology. Here, a novel hierarchically sea urchin-like electrocatalyst (Mo4O11-MoS2-VO2) is synthesized by hydrothermal deposition and post-annealing strategy. The...
Saved in:
Published in: | Chinese chemical letters 2023-04, Vol.34 (4), p.107724, Article 107724 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Developing efficient electrocatalysts for hydrogen evolution reaction (HER) is of great importance in contemporary water electrolysis technology. Here, a novel hierarchically sea urchin-like electrocatalyst (Mo4O11-MoS2-VO2) is synthesized by hydrothermal deposition and post-annealing strategy. The optimized electrocatalyst behaves as a high active hydrogen evolution electrode in 0.5 mol/L H2SO4. This electrode needs overpotential of only 43 mV to achieve 10 mA/cm2 with a Tafel slope of 37 mV/dec and maintains its catalytic activity for at least 36 h. Better than most previously reported non-noble metal electrocatalysts anchored on carbon cloth. It is worth mentioning that the hierarchical sea urchin-like structure promotes the redistribution of electrons and provides more catalytic active sites. This strategy shows a way for the construction of inexpensive non-noble metal electrocatalysts in the future.
Herein, an efficient sea urchin-like electrocatalyst (Mo4O11-MoS2-VO2) is synthesized with hydrothermal deposition and post-annealing strategy. The catalytically active area was expanded, and the intrinsic activity toward HER was significantly improved.
[Display omitted] |
---|---|
ISSN: | 1001-8417 1878-5964 |
DOI: | 10.1016/j.cclet.2022.08.004 |