Loading…
Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application
Biomacromolecules are attractive in biomedical applications as therapeutic agents and potential drug carriers due to their natural active components, good biocompatibility, and high targeting. However, their large relative molecular weight, complex structure, susceptibility to degradation, and poor...
Saved in:
Published in: | Chinese chemical letters 2024-07, Vol.35 (7), p.109169, Article 109169 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biomacromolecules are attractive in biomedical applications as therapeutic agents and potential drug carriers due to their natural active components, good biocompatibility, and high targeting. However, their large relative molecular weight, complex structure, susceptibility to degradation, and poor stability limit their usefulness. Nanotechnology can address these issues by improving the therapeutic value, bioavailability, permeability, and absorption of biomacromolecules while regulating their retention time in the body. Especially, compelling evidence has been reported that supercritical fluid (SCF) technology has emerged as an alternative that maintains the integrity of biomacromolecules and reduces environmental contamination. In this review, we highlight a set of unique nanosizing strategies based on SCF technology for biomacromolecular nanomedicine, and extensively discuss their characteristics and mechanisms. In particular, the protein-based, nucleic acid-based, and polysaccharide-based nanomedicine preparations via SCF technology and their biomedical applications are summarized, and the potential for industrial production of biomacromolecular drugs is also considered. We further provide perspectives on the opportunities and challenges in this excellent field of biomacromolecular drugs nanotechnology.
This review summarizes a set of unique nanosizing strategies based on supercritical fluid (SCF) technology for biomacromolecular nanomedicine, extensively discusses their biomedical applications and challenges, and further offers insights into developmental prospects. [Display omitted] |
---|---|
ISSN: | 1001-8417 1878-5964 |
DOI: | 10.1016/j.cclet.2023.109169 |