Loading…

Cation-disordered Li2FeTiO4 nanoparticles with multiple cation and anion redox for symmetric lithium-ion batteries

Symmetric secondary batteries are expected to become promising storage devices on account of their low cost, environmentally friendly and high safety. Nevertheless, the further development of symmetric batteries needs to rely on bipolar electrodes with superior performance. Cation-disordered rocksal...

Full description

Saved in:
Bibliographic Details
Published in:Chinese chemical letters 2024-08, p.110346, Article 110346
Main Authors: Ma, Wenjie, Tang, Yakun, Zhang, Yue, Liu, Lang, Tang, Bin, Jia, Dianzeng, Cao, Yuliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c986-d13e970add4d3a4df508e795bb63f5bd5dec512692a217fbf07d592b3cc13d0e3
container_end_page
container_issue
container_start_page 110346
container_title Chinese chemical letters
container_volume
creator Ma, Wenjie
Tang, Yakun
Zhang, Yue
Liu, Lang
Tang, Bin
Jia, Dianzeng
Cao, Yuliang
description Symmetric secondary batteries are expected to become promising storage devices on account of their low cost, environmentally friendly and high safety. Nevertheless, the further development of symmetric batteries needs to rely on bipolar electrodes with superior performance. Cation-disordered rocksalt (DRX) Li2FeTiO4 shows promising properties as symmetric electrodes, based on the ability of iron to undergo multiple electrochemical reactions over a wide voltage window. Unfortunately, this cation-disordered structure would not provide a cross-path for the rapid migration of Li+, ultimately resulting in inferior electrochemical dynamics and cycle stability. Herein, Li2FeTiO4 nanoparticles assembled by ultrafine nanocrystals are synthesized via a sol-gel method through an orderly reaction regulation strategy of precursor reactants. Such ultrafine nanocrystals increase the active sites to promote the reversibility of multi-cationic (e.g., stable Fe2+/Fe3+, Ti3+/Ti4+ and moderated Fe3+/Fe4+) and anionic redox, and maintain the DRX structure well during the cycling process. The half cells with nano-sized Li2FeTiO4 as cathode/anode exhibit a high reversible capacity of 127.8/500.8 mAh/g, respectively. Besides, the Li2FeTiO4//Li2FeTiO4 symmetric full cell could provide a reversible capacity of 95.4 mAh/g at 0.1 A/g after 200 cycles. This hierarchical self-assembly by nanocrystal strategy could offer effective guidance for high-performance electrode design for rechargeable secondary batteries. Li2FeTiO4 nanoparticles assembled by ultrafine nanocrystals, are synthesized via a sol-gel method. Hierarchical self-assembly structure of nanocrystals provides diversified diffusion channels and increases the active sites, enhancing the reversibility of multi-ion redox and kinetic behavior. [Display omitted]
doi_str_mv 10.1016/j.cclet.2024.110346
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cclet_2024_110346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1001841724008659</els_id><sourcerecordid>S1001841724008659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c986-d13e970add4d3a4df508e795bb63f5bd5dec512692a217fbf07d592b3cc13d0e3</originalsourceid><addsrcrecordid>eNp9kMtKA0EQRXuhYIx-gZv-gRn7Mc-FCwlGhUA22Tc9XTVYYR6hu6Pm751JXGdRVMHlXIrD2JMUqRSyeN6nznUYUyVUlkopdFbcsIUUQiZVJss7dh_CXghVVbpYML-ykcYhAQqjB_QIfENqjTvaZnyww3iwPtJUGPgPxS_eH7tIhw65O3PcDjDNfE3o-Mvb0fNw6nuMnhzvJoSOfTLnjY0RPWF4YLet7QI-_u8l263fdquPZLN9_1y9bhJXV0UCUmNdCguQgbYZtLmosKzzpil0mzeQA7pcqqJWVsmybVpRQl6rRjsnNQjUS6Yvtc6PIXhszcFTb_3JSGFmU2ZvzqbMbMpcTE3Uy4XC6bNvQm-CIxwcAnl00cBIV_k_TO53tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cation-disordered Li2FeTiO4 nanoparticles with multiple cation and anion redox for symmetric lithium-ion batteries</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ma, Wenjie ; Tang, Yakun ; Zhang, Yue ; Liu, Lang ; Tang, Bin ; Jia, Dianzeng ; Cao, Yuliang</creator><creatorcontrib>Ma, Wenjie ; Tang, Yakun ; Zhang, Yue ; Liu, Lang ; Tang, Bin ; Jia, Dianzeng ; Cao, Yuliang</creatorcontrib><description>Symmetric secondary batteries are expected to become promising storage devices on account of their low cost, environmentally friendly and high safety. Nevertheless, the further development of symmetric batteries needs to rely on bipolar electrodes with superior performance. Cation-disordered rocksalt (DRX) Li2FeTiO4 shows promising properties as symmetric electrodes, based on the ability of iron to undergo multiple electrochemical reactions over a wide voltage window. Unfortunately, this cation-disordered structure would not provide a cross-path for the rapid migration of Li+, ultimately resulting in inferior electrochemical dynamics and cycle stability. Herein, Li2FeTiO4 nanoparticles assembled by ultrafine nanocrystals are synthesized via a sol-gel method through an orderly reaction regulation strategy of precursor reactants. Such ultrafine nanocrystals increase the active sites to promote the reversibility of multi-cationic (e.g., stable Fe2+/Fe3+, Ti3+/Ti4+ and moderated Fe3+/Fe4+) and anionic redox, and maintain the DRX structure well during the cycling process. The half cells with nano-sized Li2FeTiO4 as cathode/anode exhibit a high reversible capacity of 127.8/500.8 mAh/g, respectively. Besides, the Li2FeTiO4//Li2FeTiO4 symmetric full cell could provide a reversible capacity of 95.4 mAh/g at 0.1 A/g after 200 cycles. This hierarchical self-assembly by nanocrystal strategy could offer effective guidance for high-performance electrode design for rechargeable secondary batteries. Li2FeTiO4 nanoparticles assembled by ultrafine nanocrystals, are synthesized via a sol-gel method. Hierarchical self-assembly structure of nanocrystals provides diversified diffusion channels and increases the active sites, enhancing the reversibility of multi-ion redox and kinetic behavior. [Display omitted]</description><identifier>ISSN: 1001-8417</identifier><identifier>DOI: 10.1016/j.cclet.2024.110346</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cation-disordered ; Li2FeTiO4 ; Regulating nucleation rate ; Reversible cationic and anionic redox ; Symmetric lithium-ion batteries</subject><ispartof>Chinese chemical letters, 2024-08, p.110346, Article 110346</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c986-d13e970add4d3a4df508e795bb63f5bd5dec512692a217fbf07d592b3cc13d0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ma, Wenjie</creatorcontrib><creatorcontrib>Tang, Yakun</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Jia, Dianzeng</creatorcontrib><creatorcontrib>Cao, Yuliang</creatorcontrib><title>Cation-disordered Li2FeTiO4 nanoparticles with multiple cation and anion redox for symmetric lithium-ion batteries</title><title>Chinese chemical letters</title><description>Symmetric secondary batteries are expected to become promising storage devices on account of their low cost, environmentally friendly and high safety. Nevertheless, the further development of symmetric batteries needs to rely on bipolar electrodes with superior performance. Cation-disordered rocksalt (DRX) Li2FeTiO4 shows promising properties as symmetric electrodes, based on the ability of iron to undergo multiple electrochemical reactions over a wide voltage window. Unfortunately, this cation-disordered structure would not provide a cross-path for the rapid migration of Li+, ultimately resulting in inferior electrochemical dynamics and cycle stability. Herein, Li2FeTiO4 nanoparticles assembled by ultrafine nanocrystals are synthesized via a sol-gel method through an orderly reaction regulation strategy of precursor reactants. Such ultrafine nanocrystals increase the active sites to promote the reversibility of multi-cationic (e.g., stable Fe2+/Fe3+, Ti3+/Ti4+ and moderated Fe3+/Fe4+) and anionic redox, and maintain the DRX structure well during the cycling process. The half cells with nano-sized Li2FeTiO4 as cathode/anode exhibit a high reversible capacity of 127.8/500.8 mAh/g, respectively. Besides, the Li2FeTiO4//Li2FeTiO4 symmetric full cell could provide a reversible capacity of 95.4 mAh/g at 0.1 A/g after 200 cycles. This hierarchical self-assembly by nanocrystal strategy could offer effective guidance for high-performance electrode design for rechargeable secondary batteries. Li2FeTiO4 nanoparticles assembled by ultrafine nanocrystals, are synthesized via a sol-gel method. Hierarchical self-assembly structure of nanocrystals provides diversified diffusion channels and increases the active sites, enhancing the reversibility of multi-ion redox and kinetic behavior. [Display omitted]</description><subject>Cation-disordered</subject><subject>Li2FeTiO4</subject><subject>Regulating nucleation rate</subject><subject>Reversible cationic and anionic redox</subject><subject>Symmetric lithium-ion batteries</subject><issn>1001-8417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKA0EQRXuhYIx-gZv-gRn7Mc-FCwlGhUA22Tc9XTVYYR6hu6Pm751JXGdRVMHlXIrD2JMUqRSyeN6nznUYUyVUlkopdFbcsIUUQiZVJss7dh_CXghVVbpYML-ykcYhAQqjB_QIfENqjTvaZnyww3iwPtJUGPgPxS_eH7tIhw65O3PcDjDNfE3o-Mvb0fNw6nuMnhzvJoSOfTLnjY0RPWF4YLet7QI-_u8l263fdquPZLN9_1y9bhJXV0UCUmNdCguQgbYZtLmosKzzpil0mzeQA7pcqqJWVsmybVpRQl6rRjsnNQjUS6Yvtc6PIXhszcFTb_3JSGFmU2ZvzqbMbMpcTE3Uy4XC6bNvQm-CIxwcAnl00cBIV_k_TO53tw</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Ma, Wenjie</creator><creator>Tang, Yakun</creator><creator>Zhang, Yue</creator><creator>Liu, Lang</creator><creator>Tang, Bin</creator><creator>Jia, Dianzeng</creator><creator>Cao, Yuliang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202408</creationdate><title>Cation-disordered Li2FeTiO4 nanoparticles with multiple cation and anion redox for symmetric lithium-ion batteries</title><author>Ma, Wenjie ; Tang, Yakun ; Zhang, Yue ; Liu, Lang ; Tang, Bin ; Jia, Dianzeng ; Cao, Yuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c986-d13e970add4d3a4df508e795bb63f5bd5dec512692a217fbf07d592b3cc13d0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cation-disordered</topic><topic>Li2FeTiO4</topic><topic>Regulating nucleation rate</topic><topic>Reversible cationic and anionic redox</topic><topic>Symmetric lithium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wenjie</creatorcontrib><creatorcontrib>Tang, Yakun</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Jia, Dianzeng</creatorcontrib><creatorcontrib>Cao, Yuliang</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese chemical letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wenjie</au><au>Tang, Yakun</au><au>Zhang, Yue</au><au>Liu, Lang</au><au>Tang, Bin</au><au>Jia, Dianzeng</au><au>Cao, Yuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation-disordered Li2FeTiO4 nanoparticles with multiple cation and anion redox for symmetric lithium-ion batteries</atitle><jtitle>Chinese chemical letters</jtitle><date>2024-08</date><risdate>2024</risdate><spage>110346</spage><pages>110346-</pages><artnum>110346</artnum><issn>1001-8417</issn><abstract>Symmetric secondary batteries are expected to become promising storage devices on account of their low cost, environmentally friendly and high safety. Nevertheless, the further development of symmetric batteries needs to rely on bipolar electrodes with superior performance. Cation-disordered rocksalt (DRX) Li2FeTiO4 shows promising properties as symmetric electrodes, based on the ability of iron to undergo multiple electrochemical reactions over a wide voltage window. Unfortunately, this cation-disordered structure would not provide a cross-path for the rapid migration of Li+, ultimately resulting in inferior electrochemical dynamics and cycle stability. Herein, Li2FeTiO4 nanoparticles assembled by ultrafine nanocrystals are synthesized via a sol-gel method through an orderly reaction regulation strategy of precursor reactants. Such ultrafine nanocrystals increase the active sites to promote the reversibility of multi-cationic (e.g., stable Fe2+/Fe3+, Ti3+/Ti4+ and moderated Fe3+/Fe4+) and anionic redox, and maintain the DRX structure well during the cycling process. The half cells with nano-sized Li2FeTiO4 as cathode/anode exhibit a high reversible capacity of 127.8/500.8 mAh/g, respectively. Besides, the Li2FeTiO4//Li2FeTiO4 symmetric full cell could provide a reversible capacity of 95.4 mAh/g at 0.1 A/g after 200 cycles. This hierarchical self-assembly by nanocrystal strategy could offer effective guidance for high-performance electrode design for rechargeable secondary batteries. Li2FeTiO4 nanoparticles assembled by ultrafine nanocrystals, are synthesized via a sol-gel method. Hierarchical self-assembly structure of nanocrystals provides diversified diffusion channels and increases the active sites, enhancing the reversibility of multi-ion redox and kinetic behavior. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cclet.2024.110346</doi></addata></record>
fulltext fulltext
identifier ISSN: 1001-8417
ispartof Chinese chemical letters, 2024-08, p.110346, Article 110346
issn 1001-8417
language eng
recordid cdi_crossref_primary_10_1016_j_cclet_2024_110346
source ScienceDirect Freedom Collection 2022-2024
subjects Cation-disordered
Li2FeTiO4
Regulating nucleation rate
Reversible cationic and anionic redox
Symmetric lithium-ion batteries
title Cation-disordered Li2FeTiO4 nanoparticles with multiple cation and anion redox for symmetric lithium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation-disordered%20Li2FeTiO4%20nanoparticles%20with%20multiple%20cation%20and%20anion%20redox%20for%20symmetric%20lithium-ion%20batteries&rft.jtitle=Chinese%20chemical%20letters&rft.au=Ma,%20Wenjie&rft.date=2024-08&rft.spage=110346&rft.pages=110346-&rft.artnum=110346&rft.issn=1001-8417&rft_id=info:doi/10.1016/j.cclet.2024.110346&rft_dat=%3Celsevier_cross%3ES1001841724008659%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c986-d13e970add4d3a4df508e795bb63f5bd5dec512692a217fbf07d592b3cc13d0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true