Loading…
Multi-functional and highly conductive textiles with ultra-high durability through ‘green’ fabrication process
Machine-washable conductive textiles were fabricated through a full “green” route by coating textiles with a novel conductive crosslinked polymer composite coating from single-walled carbon nanotubes and bio-mass derived glucaric acid/chitosan (GA-chitosan) organic salt aqueous solution. The conduct...
Saved in:
Published in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2021-02, Vol.406, p.127140, Article 127140 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Machine-washable conductive textiles were fabricated through a full “green” route by coating textiles with a novel conductive crosslinked polymer composite coating from single-walled carbon nanotubes and bio-mass derived glucaric acid/chitosan (GA-chitosan) organic salt aqueous solution. The conductive textiles exhibit exceptional EMI shielding efficiency and Joule heating performance with ultra-high stability and durability.
[Display omitted]
•A biomass-derived crosslinked and conductive polyamide composite coating was fabricated via environmental-friendly method.•Various conductive textiles were fabricated by direct coating of the biobased conductive composite coatings.•These conductive textiles exhibit exceptional EMI shielding efficiency and Joule heating performance.•These conductive textiles are machine-washable and exhibit ultra-high stability and durability.
Conductive textiles with mechanical flexibility, long-term durability and stability under harsh conditions are highly desired for potential applications in wearable electronics and devices. One challenge associated with the development of such materials is their fabrication method, which requires to be low-cost, scalable, and environmental-friendly. Herein, we developed a full “green” route to fabricate machine-washable conductive textiles by coating textiles with a novel crosslinked and conductive polymer composite coating, using single-walled carbon nanotubes (SWNTs) and bio-mass derived glucaric acid/chitosan (GA-chitosan) organic salt aqueous solution with dip-coating or spray-coating. The crosslinked SWNTs/GA-chitosan polyamide coatings exhibit a high electrical conductivity of up to 7.4 × 102 S/m and high water/organic solvents resistance. The conductive textiles can achieve an exceptional Joule heating performance driven by moderate voltage and exhibit a high electromagnetic interference shielding efficiency of approximately 30 dB at X-band under optimized formulation. The high adhesive energy between the polymer composite coatings and textile substrates enables the ultra-high durability and stability of textiles, confirmed by mechanical deformation, rubbing, and washing tests. This simple and organic solvent-free processing method provides an environmentally friendly, cost-effective fabrication approach, holding great promise for large-scale production of multifunctional conductive wearable textiles for EMI shielding and/or personal heating applications. |
---|---|
ISSN: | 1385-8947 1873-3212 |
DOI: | 10.1016/j.cej.2020.127140 |