Loading…

Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation

[Display omitted] •Au-TiO2 samples are fabricated with Au deposited on the different facets of TiO2.•Au-TiO2(O) shows superior UV and visible photocatalytic performance in CO2 reduction.•Smaller Schottky barrier height is achieved at Au/TiO2(101) interface of Au-TiO2(O).•The transfer of CB electrons...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2021-01, Vol.404, p.127145, Article 127145
Main Authors: Wang, An, Wu, Shijie, Dong, Jialu, Wang, Ruoxin, Wang, Jiawei, Zhang, Jiali, Zhong, Shuxian, Bai, Song
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-cd7bf78d29947c940b1e9f8238b786d3a8a6470a66c58d268c9eed0b939ba3043
cites cdi_FETCH-LOGICAL-c297t-cd7bf78d29947c940b1e9f8238b786d3a8a6470a66c58d268c9eed0b939ba3043
container_end_page
container_issue
container_start_page 127145
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 404
creator Wang, An
Wu, Shijie
Dong, Jialu
Wang, Ruoxin
Wang, Jiawei
Zhang, Jiali
Zhong, Shuxian
Bai, Song
description [Display omitted] •Au-TiO2 samples are fabricated with Au deposited on the different facets of TiO2.•Au-TiO2(O) shows superior UV and visible photocatalytic performance in CO2 reduction.•Smaller Schottky barrier height is achieved at Au/TiO2(101) interface of Au-TiO2(O).•The transfer of CB electrons from TiO2 to Au is enhanced under UV light irradiation.•The hot electron injection from Au to TiO2 is promoted under visible light excitation. Hybrid photocatalytic nanostructures composed of plasmonic metal and wide-band-gap semiconductor components have been widely developed, in which metal not only acts as a cocatalyst to trap the photogenerated electrons from semiconductor for improved charge separation and provide highly active sites for accelerated reaction kinetics, but also serves as a light-harvesting antennae to extend the light absorption region based on the injection of plasmonic hot electrons into the semiconductor. In both circumstances, rational design of metal/semiconductor interface is highly desirable to smooth the migration of electrons and promote the separation of carriers. Herein, based on the deposition of Au on TiO2 nanocrystals with different exposed facets, it is found that the formation of Au/TiO2(101) interface lowers the height of Schottky barrier in comparison with Au/TiO2(001) interface, enhancing the transfer of conduction band (CB) electrons from TiO2 to Au cocatalysts under ultraviolet light irradiation and promoting the hot electron injection from plasmonic Au into the CB of TiO2 with the excitation of Au by visible light. The more efficient interfacial charge transfer and separation enable more electrons participating in the conversion of CO2 to CO and CH4. As a result, at both excitation wavelengths, the Au-TiO2 sample with exclusive Au/TiO2(101) interfaces significantly ameliorates the photocatalytic activities in CO and CH4 production compared to other samples containing Au/TiO2(001) interfaces. The interfacial facet engineered Schottky barrier may open a new window to rationally designing metal–semiconductor hybrid structures for photocatalysis.
doi_str_mv 10.1016/j.cej.2020.127145
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2020_127145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894720332721</els_id><sourcerecordid>S1385894720332721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-cd7bf78d29947c940b1e9f8238b786d3a8a6470a66c58d268c9eed0b939ba3043</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEs8PYOcfSLGdNLHFClW8JCQWwNryY9JOCXZlu0X9Kz4RR2XNamzp3qOZU1XXjM4YZd3NemZhPeOUlz_vWTs_qs6Y6Ju64Ywfl3cj5rWQbX9anae0ppR2ksmz6ufZZ4iDtqhHUgZkAn6JHiCiX5LgSV4BebOrkPPnnhgdI0IkBvI3gCebUaev4NGSuy3R3pF3fOUEPTEhpDwRpvqmtIPVWY_7XKKLEongtjZj4W-9K8DtmKPeYRjLAhNnhwnNCGTE5SoTjFE71FP-sjoZ9Jjg6m9eVB8P9--Lp_rl9fF5cfdSWy77XFvXm6EXjstys5UtNQzkIHgjTC8612ihu7anuuvsvKQ6YSWAo0Y20uiGts1FxQ5cG0NKEQa1ifil414xqiblaq2KcjUpVwflpXN76EBZbFc8qWQRvAWHEWxWLuA_7V8aRY3F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation</title><source>Elsevier</source><creator>Wang, An ; Wu, Shijie ; Dong, Jialu ; Wang, Ruoxin ; Wang, Jiawei ; Zhang, Jiali ; Zhong, Shuxian ; Bai, Song</creator><creatorcontrib>Wang, An ; Wu, Shijie ; Dong, Jialu ; Wang, Ruoxin ; Wang, Jiawei ; Zhang, Jiali ; Zhong, Shuxian ; Bai, Song</creatorcontrib><description>[Display omitted] •Au-TiO2 samples are fabricated with Au deposited on the different facets of TiO2.•Au-TiO2(O) shows superior UV and visible photocatalytic performance in CO2 reduction.•Smaller Schottky barrier height is achieved at Au/TiO2(101) interface of Au-TiO2(O).•The transfer of CB electrons from TiO2 to Au is enhanced under UV light irradiation.•The hot electron injection from Au to TiO2 is promoted under visible light excitation. Hybrid photocatalytic nanostructures composed of plasmonic metal and wide-band-gap semiconductor components have been widely developed, in which metal not only acts as a cocatalyst to trap the photogenerated electrons from semiconductor for improved charge separation and provide highly active sites for accelerated reaction kinetics, but also serves as a light-harvesting antennae to extend the light absorption region based on the injection of plasmonic hot electrons into the semiconductor. In both circumstances, rational design of metal/semiconductor interface is highly desirable to smooth the migration of electrons and promote the separation of carriers. Herein, based on the deposition of Au on TiO2 nanocrystals with different exposed facets, it is found that the formation of Au/TiO2(101) interface lowers the height of Schottky barrier in comparison with Au/TiO2(001) interface, enhancing the transfer of conduction band (CB) electrons from TiO2 to Au cocatalysts under ultraviolet light irradiation and promoting the hot electron injection from plasmonic Au into the CB of TiO2 with the excitation of Au by visible light. The more efficient interfacial charge transfer and separation enable more electrons participating in the conversion of CO2 to CO and CH4. As a result, at both excitation wavelengths, the Au-TiO2 sample with exclusive Au/TiO2(101) interfaces significantly ameliorates the photocatalytic activities in CO and CH4 production compared to other samples containing Au/TiO2(001) interfaces. The interfacial facet engineered Schottky barrier may open a new window to rationally designing metal–semiconductor hybrid structures for photocatalysis.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2020.127145</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CO2 reduction ; Facet ; Interface ; Photocatalysis ; Plasmonic ; Schottky barrier</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2021-01, Vol.404, p.127145, Article 127145</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-cd7bf78d29947c940b1e9f8238b786d3a8a6470a66c58d268c9eed0b939ba3043</citedby><cites>FETCH-LOGICAL-c297t-cd7bf78d29947c940b1e9f8238b786d3a8a6470a66c58d268c9eed0b939ba3043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, An</creatorcontrib><creatorcontrib>Wu, Shijie</creatorcontrib><creatorcontrib>Dong, Jialu</creatorcontrib><creatorcontrib>Wang, Ruoxin</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Zhang, Jiali</creatorcontrib><creatorcontrib>Zhong, Shuxian</creatorcontrib><creatorcontrib>Bai, Song</creatorcontrib><title>Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>[Display omitted] •Au-TiO2 samples are fabricated with Au deposited on the different facets of TiO2.•Au-TiO2(O) shows superior UV and visible photocatalytic performance in CO2 reduction.•Smaller Schottky barrier height is achieved at Au/TiO2(101) interface of Au-TiO2(O).•The transfer of CB electrons from TiO2 to Au is enhanced under UV light irradiation.•The hot electron injection from Au to TiO2 is promoted under visible light excitation. Hybrid photocatalytic nanostructures composed of plasmonic metal and wide-band-gap semiconductor components have been widely developed, in which metal not only acts as a cocatalyst to trap the photogenerated electrons from semiconductor for improved charge separation and provide highly active sites for accelerated reaction kinetics, but also serves as a light-harvesting antennae to extend the light absorption region based on the injection of plasmonic hot electrons into the semiconductor. In both circumstances, rational design of metal/semiconductor interface is highly desirable to smooth the migration of electrons and promote the separation of carriers. Herein, based on the deposition of Au on TiO2 nanocrystals with different exposed facets, it is found that the formation of Au/TiO2(101) interface lowers the height of Schottky barrier in comparison with Au/TiO2(001) interface, enhancing the transfer of conduction band (CB) electrons from TiO2 to Au cocatalysts under ultraviolet light irradiation and promoting the hot electron injection from plasmonic Au into the CB of TiO2 with the excitation of Au by visible light. The more efficient interfacial charge transfer and separation enable more electrons participating in the conversion of CO2 to CO and CH4. As a result, at both excitation wavelengths, the Au-TiO2 sample with exclusive Au/TiO2(101) interfaces significantly ameliorates the photocatalytic activities in CO and CH4 production compared to other samples containing Au/TiO2(001) interfaces. The interfacial facet engineered Schottky barrier may open a new window to rationally designing metal–semiconductor hybrid structures for photocatalysis.</description><subject>CO2 reduction</subject><subject>Facet</subject><subject>Interface</subject><subject>Photocatalysis</subject><subject>Plasmonic</subject><subject>Schottky barrier</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEs8PYOcfSLGdNLHFClW8JCQWwNryY9JOCXZlu0X9Kz4RR2XNamzp3qOZU1XXjM4YZd3NemZhPeOUlz_vWTs_qs6Y6Ju64Ywfl3cj5rWQbX9anae0ppR2ksmz6ufZZ4iDtqhHUgZkAn6JHiCiX5LgSV4BebOrkPPnnhgdI0IkBvI3gCebUaev4NGSuy3R3pF3fOUEPTEhpDwRpvqmtIPVWY_7XKKLEongtjZj4W-9K8DtmKPeYRjLAhNnhwnNCGTE5SoTjFE71FP-sjoZ9Jjg6m9eVB8P9--Lp_rl9fF5cfdSWy77XFvXm6EXjstys5UtNQzkIHgjTC8612ihu7anuuvsvKQ6YSWAo0Y20uiGts1FxQ5cG0NKEQa1ifil414xqiblaq2KcjUpVwflpXN76EBZbFc8qWQRvAWHEWxWLuA_7V8aRY3F</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Wang, An</creator><creator>Wu, Shijie</creator><creator>Dong, Jialu</creator><creator>Wang, Ruoxin</creator><creator>Wang, Jiawei</creator><creator>Zhang, Jiali</creator><creator>Zhong, Shuxian</creator><creator>Bai, Song</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210115</creationdate><title>Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation</title><author>Wang, An ; Wu, Shijie ; Dong, Jialu ; Wang, Ruoxin ; Wang, Jiawei ; Zhang, Jiali ; Zhong, Shuxian ; Bai, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-cd7bf78d29947c940b1e9f8238b786d3a8a6470a66c58d268c9eed0b939ba3043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CO2 reduction</topic><topic>Facet</topic><topic>Interface</topic><topic>Photocatalysis</topic><topic>Plasmonic</topic><topic>Schottky barrier</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, An</creatorcontrib><creatorcontrib>Wu, Shijie</creatorcontrib><creatorcontrib>Dong, Jialu</creatorcontrib><creatorcontrib>Wang, Ruoxin</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Zhang, Jiali</creatorcontrib><creatorcontrib>Zhong, Shuxian</creatorcontrib><creatorcontrib>Bai, Song</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, An</au><au>Wu, Shijie</au><au>Dong, Jialu</au><au>Wang, Ruoxin</au><au>Wang, Jiawei</au><au>Zhang, Jiali</au><au>Zhong, Shuxian</au><au>Bai, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>404</volume><spage>127145</spage><pages>127145-</pages><artnum>127145</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>[Display omitted] •Au-TiO2 samples are fabricated with Au deposited on the different facets of TiO2.•Au-TiO2(O) shows superior UV and visible photocatalytic performance in CO2 reduction.•Smaller Schottky barrier height is achieved at Au/TiO2(101) interface of Au-TiO2(O).•The transfer of CB electrons from TiO2 to Au is enhanced under UV light irradiation.•The hot electron injection from Au to TiO2 is promoted under visible light excitation. Hybrid photocatalytic nanostructures composed of plasmonic metal and wide-band-gap semiconductor components have been widely developed, in which metal not only acts as a cocatalyst to trap the photogenerated electrons from semiconductor for improved charge separation and provide highly active sites for accelerated reaction kinetics, but also serves as a light-harvesting antennae to extend the light absorption region based on the injection of plasmonic hot electrons into the semiconductor. In both circumstances, rational design of metal/semiconductor interface is highly desirable to smooth the migration of electrons and promote the separation of carriers. Herein, based on the deposition of Au on TiO2 nanocrystals with different exposed facets, it is found that the formation of Au/TiO2(101) interface lowers the height of Schottky barrier in comparison with Au/TiO2(001) interface, enhancing the transfer of conduction band (CB) electrons from TiO2 to Au cocatalysts under ultraviolet light irradiation and promoting the hot electron injection from plasmonic Au into the CB of TiO2 with the excitation of Au by visible light. The more efficient interfacial charge transfer and separation enable more electrons participating in the conversion of CO2 to CO and CH4. As a result, at both excitation wavelengths, the Au-TiO2 sample with exclusive Au/TiO2(101) interfaces significantly ameliorates the photocatalytic activities in CO and CH4 production compared to other samples containing Au/TiO2(001) interfaces. The interfacial facet engineered Schottky barrier may open a new window to rationally designing metal–semiconductor hybrid structures for photocatalysis.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2020.127145</doi></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2021-01, Vol.404, p.127145, Article 127145
issn 1385-8947
1873-3212
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2020_127145
source Elsevier
subjects CO2 reduction
Facet
Interface
Photocatalysis
Plasmonic
Schottky barrier
title Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20facet%20engineering%20on%20the%20Schottky%20barrier%20between%20plasmonic%20Au%20and%20TiO2%20in%20boosting%20the%20photocatalytic%20CO2%20reduction%20under%20ultraviolet%20and%20visible%20light%20irradiation&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Wang,%20An&rft.date=2021-01-15&rft.volume=404&rft.spage=127145&rft.pages=127145-&rft.artnum=127145&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2020.127145&rft_dat=%3Celsevier_cross%3ES1385894720332721%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-cd7bf78d29947c940b1e9f8238b786d3a8a6470a66c58d268c9eed0b939ba3043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true