Loading…

Surface-manipulated membranes to accelerate biofilm formation and to resist bacterial detachment in MBfR for aerobic methane oxidation coupled to denitrification

[Display omitted] •Surface-manipulated membranes were prepared to firstly exert AME-D in MBfRs.•Improved interfacial interaction energy between microbes and modified membrane.•Modified membrane accelerates biofilm formation and shortens MBfR start-up time.•Biofilm resistance is enhanced for stable d...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2022-02, Vol.430, p.132629, Article 132629
Main Authors: Lu, Jian-Jiang, Shen, Qi, Li, Xiao-Ying, Sun, Fei-Yun, Yi, Jun-Bo, Dong, Wen-Yi, Yan, Wei-Jia, Du, Hong, Mu, Jia-Le
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-43ac0736c49300293003a491baea6ecd8142f726c6963602068574cb39e7b3
cites cdi_FETCH-LOGICAL-c297t-43ac0736c49300293003a491baea6ecd8142f726c6963602068574cb39e7b3
container_end_page
container_issue
container_start_page 132629
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 430
creator Lu, Jian-Jiang
Shen, Qi
Li, Xiao-Ying
Sun, Fei-Yun
Yi, Jun-Bo
Dong, Wen-Yi
Yan, Wei-Jia
Du, Hong
Mu, Jia-Le
description [Display omitted] •Surface-manipulated membranes were prepared to firstly exert AME-D in MBfRs.•Improved interfacial interaction energy between microbes and modified membrane.•Modified membrane accelerates biofilm formation and shortens MBfR start-up time.•Biofilm resistance is enhanced for stable denitrification performances of MBfR. Undesired long start-up time and unstable denitrification performance are major bottlenecks for engineering application of methane-based membrane biofilm reactors (MBfRs). In this study, two surface-manipulated membranes by respectively coating dopamine (DOPA) and grafting methoxy-poly(ethyleneglycol)-amine (mPEG-NH2) onto the base polypropylene (PP) membrane were prepared, and for the first employed to aerobic methane oxidation coupled to denitrification (AME-D) process in MBfRs for quick biofilm formation and improving denitrification performance. The experiments demonstrated that the modified membranes, especially for PP/DOPA/mPEGNH2 membrane, accelerated biofilm formation, and then shorten above 31% start-up time compared to the base PP membrane. Meanwhile, the biofilm detachment resistances also improved in the MBfRs employing the modified membrane. Extended Deraguin-Landau-Verwery-Oxerbeek (XDLVO) theory analysis indicated these benefits mainly attribute to enhanced interfacial interaction energy, which is significant to microbial initial attachment onto membrane surface. 16S rRNA gene analysis demonstrated the modified membrane also preferentially increased the abundances of key microorganisms at initial stage. These findings revealed the importance of quick biofilm formation and robust detachment resistance by involving surface-manipulated membranes onto maintaining MBfRs efficiency and stability.
doi_str_mv 10.1016/j.cej.2021.132629
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2021_132629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894721042078</els_id><sourcerecordid>S1385894721042078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-43ac0736c49300293003a491baea6ecd8142f726c6963602068574cb39e7b3</originalsourceid><addsrcrecordid>eNp9kM1O7DAMhSt0keACD8AuL9AhPyVtxAoQfxIICdhHrusKj9pmlGQQ93Hum9IyrNnYlo6_Y-sUxamSKyWVPVuvkNYrLbVaKaOtdnvFoWpqUxqt9J95Ns152biqPij-prSWUlqn3GHx_3Ube0AqR5h4sx0gUydGGtsIEyWRgwBEGijOgmg59DyMog9xhMxhEjB1y06kxCmLFjBTZBhERxnwfaQpC57E01X_skACKIaWcT6Q32d_ET652xlh2G4G-jbraOIcuWf8lo6L_R6GRCc__ah4ub15u74vH5_vHq4vH0vUrs5lZQBlbSxWzkipl2KgcqoFAkvYNarSfa0tWmeNlVra5ryusDWO6tYcFWpnijGkFKn3m8gjxH9eSb8E7Nd-DtgvAftdwDNzsWNo_uqDKfqETBNSx5Ew-y7wL_QXcveG2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface-manipulated membranes to accelerate biofilm formation and to resist bacterial detachment in MBfR for aerobic methane oxidation coupled to denitrification</title><source>ScienceDirect Freedom Collection</source><creator>Lu, Jian-Jiang ; Shen, Qi ; Li, Xiao-Ying ; Sun, Fei-Yun ; Yi, Jun-Bo ; Dong, Wen-Yi ; Yan, Wei-Jia ; Du, Hong ; Mu, Jia-Le</creator><creatorcontrib>Lu, Jian-Jiang ; Shen, Qi ; Li, Xiao-Ying ; Sun, Fei-Yun ; Yi, Jun-Bo ; Dong, Wen-Yi ; Yan, Wei-Jia ; Du, Hong ; Mu, Jia-Le</creatorcontrib><description>[Display omitted] •Surface-manipulated membranes were prepared to firstly exert AME-D in MBfRs.•Improved interfacial interaction energy between microbes and modified membrane.•Modified membrane accelerates biofilm formation and shortens MBfR start-up time.•Biofilm resistance is enhanced for stable denitrification performances of MBfR. Undesired long start-up time and unstable denitrification performance are major bottlenecks for engineering application of methane-based membrane biofilm reactors (MBfRs). In this study, two surface-manipulated membranes by respectively coating dopamine (DOPA) and grafting methoxy-poly(ethyleneglycol)-amine (mPEG-NH2) onto the base polypropylene (PP) membrane were prepared, and for the first employed to aerobic methane oxidation coupled to denitrification (AME-D) process in MBfRs for quick biofilm formation and improving denitrification performance. The experiments demonstrated that the modified membranes, especially for PP/DOPA/mPEGNH2 membrane, accelerated biofilm formation, and then shorten above 31% start-up time compared to the base PP membrane. Meanwhile, the biofilm detachment resistances also improved in the MBfRs employing the modified membrane. Extended Deraguin-Landau-Verwery-Oxerbeek (XDLVO) theory analysis indicated these benefits mainly attribute to enhanced interfacial interaction energy, which is significant to microbial initial attachment onto membrane surface. 16S rRNA gene analysis demonstrated the modified membrane also preferentially increased the abundances of key microorganisms at initial stage. These findings revealed the importance of quick biofilm formation and robust detachment resistance by involving surface-manipulated membranes onto maintaining MBfRs efficiency and stability.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2021.132629</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aerobic methane oxidation coupled to denitrification (AMED) ; Biofilm management ; Exteded Deraguin-Landau-Verwery-Oxerbeek (XDLVO) theory ; Membrane biofilm reactor (MBfR) ; Membrane surface manipulation</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-02, Vol.430, p.132629, Article 132629</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-43ac0736c49300293003a491baea6ecd8142f726c6963602068574cb39e7b3</citedby><cites>FETCH-LOGICAL-c297t-43ac0736c49300293003a491baea6ecd8142f726c6963602068574cb39e7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lu, Jian-Jiang</creatorcontrib><creatorcontrib>Shen, Qi</creatorcontrib><creatorcontrib>Li, Xiao-Ying</creatorcontrib><creatorcontrib>Sun, Fei-Yun</creatorcontrib><creatorcontrib>Yi, Jun-Bo</creatorcontrib><creatorcontrib>Dong, Wen-Yi</creatorcontrib><creatorcontrib>Yan, Wei-Jia</creatorcontrib><creatorcontrib>Du, Hong</creatorcontrib><creatorcontrib>Mu, Jia-Le</creatorcontrib><title>Surface-manipulated membranes to accelerate biofilm formation and to resist bacterial detachment in MBfR for aerobic methane oxidation coupled to denitrification</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>[Display omitted] •Surface-manipulated membranes were prepared to firstly exert AME-D in MBfRs.•Improved interfacial interaction energy between microbes and modified membrane.•Modified membrane accelerates biofilm formation and shortens MBfR start-up time.•Biofilm resistance is enhanced for stable denitrification performances of MBfR. Undesired long start-up time and unstable denitrification performance are major bottlenecks for engineering application of methane-based membrane biofilm reactors (MBfRs). In this study, two surface-manipulated membranes by respectively coating dopamine (DOPA) and grafting methoxy-poly(ethyleneglycol)-amine (mPEG-NH2) onto the base polypropylene (PP) membrane were prepared, and for the first employed to aerobic methane oxidation coupled to denitrification (AME-D) process in MBfRs for quick biofilm formation and improving denitrification performance. The experiments demonstrated that the modified membranes, especially for PP/DOPA/mPEGNH2 membrane, accelerated biofilm formation, and then shorten above 31% start-up time compared to the base PP membrane. Meanwhile, the biofilm detachment resistances also improved in the MBfRs employing the modified membrane. Extended Deraguin-Landau-Verwery-Oxerbeek (XDLVO) theory analysis indicated these benefits mainly attribute to enhanced interfacial interaction energy, which is significant to microbial initial attachment onto membrane surface. 16S rRNA gene analysis demonstrated the modified membrane also preferentially increased the abundances of key microorganisms at initial stage. These findings revealed the importance of quick biofilm formation and robust detachment resistance by involving surface-manipulated membranes onto maintaining MBfRs efficiency and stability.</description><subject>Aerobic methane oxidation coupled to denitrification (AMED)</subject><subject>Biofilm management</subject><subject>Exteded Deraguin-Landau-Verwery-Oxerbeek (XDLVO) theory</subject><subject>Membrane biofilm reactor (MBfR)</subject><subject>Membrane surface manipulation</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O7DAMhSt0keACD8AuL9AhPyVtxAoQfxIICdhHrusKj9pmlGQQ93Hum9IyrNnYlo6_Y-sUxamSKyWVPVuvkNYrLbVaKaOtdnvFoWpqUxqt9J95Ns152biqPij-prSWUlqn3GHx_3Ube0AqR5h4sx0gUydGGtsIEyWRgwBEGijOgmg59DyMog9xhMxhEjB1y06kxCmLFjBTZBhERxnwfaQpC57E01X_skACKIaWcT6Q32d_ET652xlh2G4G-jbraOIcuWf8lo6L_R6GRCc__ah4ub15u74vH5_vHq4vH0vUrs5lZQBlbSxWzkipl2KgcqoFAkvYNarSfa0tWmeNlVra5ryusDWO6tYcFWpnijGkFKn3m8gjxH9eSb8E7Nd-DtgvAftdwDNzsWNo_uqDKfqETBNSx5Ew-y7wL_QXcveG2w</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Lu, Jian-Jiang</creator><creator>Shen, Qi</creator><creator>Li, Xiao-Ying</creator><creator>Sun, Fei-Yun</creator><creator>Yi, Jun-Bo</creator><creator>Dong, Wen-Yi</creator><creator>Yan, Wei-Jia</creator><creator>Du, Hong</creator><creator>Mu, Jia-Le</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220215</creationdate><title>Surface-manipulated membranes to accelerate biofilm formation and to resist bacterial detachment in MBfR for aerobic methane oxidation coupled to denitrification</title><author>Lu, Jian-Jiang ; Shen, Qi ; Li, Xiao-Ying ; Sun, Fei-Yun ; Yi, Jun-Bo ; Dong, Wen-Yi ; Yan, Wei-Jia ; Du, Hong ; Mu, Jia-Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-43ac0736c49300293003a491baea6ecd8142f726c6963602068574cb39e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerobic methane oxidation coupled to denitrification (AMED)</topic><topic>Biofilm management</topic><topic>Exteded Deraguin-Landau-Verwery-Oxerbeek (XDLVO) theory</topic><topic>Membrane biofilm reactor (MBfR)</topic><topic>Membrane surface manipulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jian-Jiang</creatorcontrib><creatorcontrib>Shen, Qi</creatorcontrib><creatorcontrib>Li, Xiao-Ying</creatorcontrib><creatorcontrib>Sun, Fei-Yun</creatorcontrib><creatorcontrib>Yi, Jun-Bo</creatorcontrib><creatorcontrib>Dong, Wen-Yi</creatorcontrib><creatorcontrib>Yan, Wei-Jia</creatorcontrib><creatorcontrib>Du, Hong</creatorcontrib><creatorcontrib>Mu, Jia-Le</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jian-Jiang</au><au>Shen, Qi</au><au>Li, Xiao-Ying</au><au>Sun, Fei-Yun</au><au>Yi, Jun-Bo</au><au>Dong, Wen-Yi</au><au>Yan, Wei-Jia</au><au>Du, Hong</au><au>Mu, Jia-Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-manipulated membranes to accelerate biofilm formation and to resist bacterial detachment in MBfR for aerobic methane oxidation coupled to denitrification</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>430</volume><spage>132629</spage><pages>132629-</pages><artnum>132629</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>[Display omitted] •Surface-manipulated membranes were prepared to firstly exert AME-D in MBfRs.•Improved interfacial interaction energy between microbes and modified membrane.•Modified membrane accelerates biofilm formation and shortens MBfR start-up time.•Biofilm resistance is enhanced for stable denitrification performances of MBfR. Undesired long start-up time and unstable denitrification performance are major bottlenecks for engineering application of methane-based membrane biofilm reactors (MBfRs). In this study, two surface-manipulated membranes by respectively coating dopamine (DOPA) and grafting methoxy-poly(ethyleneglycol)-amine (mPEG-NH2) onto the base polypropylene (PP) membrane were prepared, and for the first employed to aerobic methane oxidation coupled to denitrification (AME-D) process in MBfRs for quick biofilm formation and improving denitrification performance. The experiments demonstrated that the modified membranes, especially for PP/DOPA/mPEGNH2 membrane, accelerated biofilm formation, and then shorten above 31% start-up time compared to the base PP membrane. Meanwhile, the biofilm detachment resistances also improved in the MBfRs employing the modified membrane. Extended Deraguin-Landau-Verwery-Oxerbeek (XDLVO) theory analysis indicated these benefits mainly attribute to enhanced interfacial interaction energy, which is significant to microbial initial attachment onto membrane surface. 16S rRNA gene analysis demonstrated the modified membrane also preferentially increased the abundances of key microorganisms at initial stage. These findings revealed the importance of quick biofilm formation and robust detachment resistance by involving surface-manipulated membranes onto maintaining MBfRs efficiency and stability.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2021.132629</doi></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-02, Vol.430, p.132629, Article 132629
issn 1385-8947
1873-3212
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2021_132629
source ScienceDirect Freedom Collection
subjects Aerobic methane oxidation coupled to denitrification (AMED)
Biofilm management
Exteded Deraguin-Landau-Verwery-Oxerbeek (XDLVO) theory
Membrane biofilm reactor (MBfR)
Membrane surface manipulation
title Surface-manipulated membranes to accelerate biofilm formation and to resist bacterial detachment in MBfR for aerobic methane oxidation coupled to denitrification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-manipulated%20membranes%20to%20accelerate%20biofilm%20formation%20and%20to%20resist%20bacterial%20detachment%20in%20MBfR%20for%20aerobic%20methane%20oxidation%20coupled%20to%20denitrification&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Lu,%20Jian-Jiang&rft.date=2022-02-15&rft.volume=430&rft.spage=132629&rft.pages=132629-&rft.artnum=132629&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2021.132629&rft_dat=%3Celsevier_cross%3ES1385894721042078%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-43ac0736c49300293003a491baea6ecd8142f726c6963602068574cb39e7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true