Loading…

Polybenzimidazole membranes for vanadium redox flow batteries: Effect of sulfuric acid doping conditions

[Display omitted] •meta-PBI membrane was pretreated with 10 M H2SO4.•Membrane swelled 55% in thickness, resulting in a more open structure.•Conductivity in H2SO4 increased 4 times to 9 mS/cm (6.5 mS/cm in VRFB electrolyte).•In VRFB, coulomb, voltage and energy efficiency were higher than for Nafion...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2022-05, Vol.435, p.134902, Article 134902
Main Authors: Mara Ikhsan, Muhammad, Abbas, Saleem, Do, Xuan Huy, Choi, Seung-Young, Azizi, Kobra, Hjuler, Hans Aage, Jang, Jong Hyun, Ha, Heung Yong, Henkensmeier, Dirk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-3ba7e380fdcbdc1447d972171fb45a6e8bcc0328064dd1be63a1c9e63be0ad9a3
cites cdi_FETCH-LOGICAL-c340t-3ba7e380fdcbdc1447d972171fb45a6e8bcc0328064dd1be63a1c9e63be0ad9a3
container_end_page
container_issue
container_start_page 134902
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 435
creator Mara Ikhsan, Muhammad
Abbas, Saleem
Do, Xuan Huy
Choi, Seung-Young
Azizi, Kobra
Hjuler, Hans Aage
Jang, Jong Hyun
Ha, Heung Yong
Henkensmeier, Dirk
description [Display omitted] •meta-PBI membrane was pretreated with 10 M H2SO4.•Membrane swelled 55% in thickness, resulting in a more open structure.•Conductivity in H2SO4 increased 4 times to 9 mS/cm (6.5 mS/cm in VRFB electrolyte).•In VRFB, coulomb, voltage and energy efficiency were higher than for Nafion 212.•EE reached 89.6% @ 80 mA cm−2, and all efficiencies were stable over 135 cycles. Polybenzimidazole (PBI) has been considered as promising membrane material for all-vanadium redox flow batteries (VRFBs) due to its compact morphology that can hinder vanadium crossover. However, its 2–4 mS cm−1 proton conductivity remains a challenge to achieve high energy efficiency. Recently developed PBI membranes showed conductivity up to 18 mS cm−1 by pre-treatment with phosphoric acid (PA) and up to 56 mS cm−1 with KOH. However, since the operation of VRFB uses sulfuric acid (SA), pre-treatment with different chemicals generates chemical wastes. Here we investigate the effects of pre-treaments with SA at various concentrations and temperatures. The optimized membrane (25C_10M, pretreated at 25 °C in 10M SA) increases its thickness during the treatment from 10 to 17 µm, and shows an improved conductivity in 2 M SA of 9.1 mS cm−1. In V4+ containing electrolyte, the area specific resistance was 262 mΩ cm2 , which is 3.3 and 1.7 times better than for 10 µm thick standard PBI (13 µm thick in 2 M SA) and 54 µm thick Nafion 212 membranes, respectively. The selectivity is 458x104 S min cm−3, 7, 30, and 29 times better than for PA, KOH pre-swelling, and Nafion 212 membranes, respectively. A VRFB performance test with a 17 µm thick 25C_10M PBI membrane showed an energy efficiency of 89.6% at 80 mA cm−2.
doi_str_mv 10.1016/j.cej.2022.134902
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2022_134902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894722004090</els_id><sourcerecordid>S1385894722004090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-3ba7e380fdcbdc1447d972171fb45a6e8bcc0328064dd1be63a1c9e63be0ad9a3</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EEmX4AHb-gQRPzQArVJVBqgQLWFsensFRYld2Wmi_nlRlzerezXl69yB0Q0lJCa1uu9JAVzLCWEm5aAk7QTPa1LzgjLLTqfNmXjStqM_RRc4dIaRqaTtDX2-x32kIez94q_axBzzAoJMKkLGLCW9VUNZvBpzAxh_s-viNtRpHSB7yHV46B2bE0eG86d0meYOV8RbbuPbhE5sYrB99DPkKnTnVZ7j-y0v08bh8XzwXq9enl8XDqjBckLHgWtXAG-Ks0dZQIWrb1ozW1GkxVxU02hjCWUMqYS3VUHFFTTuFBqJsq_glose7JsWcEzi5Tn5QaScpkQdVspOTKnlQJY-qJub-yMD02NZDktl4CAasT9M6aaP_h_4FAvl0Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polybenzimidazole membranes for vanadium redox flow batteries: Effect of sulfuric acid doping conditions</title><source>Elsevier</source><creator>Mara Ikhsan, Muhammad ; Abbas, Saleem ; Do, Xuan Huy ; Choi, Seung-Young ; Azizi, Kobra ; Hjuler, Hans Aage ; Jang, Jong Hyun ; Ha, Heung Yong ; Henkensmeier, Dirk</creator><creatorcontrib>Mara Ikhsan, Muhammad ; Abbas, Saleem ; Do, Xuan Huy ; Choi, Seung-Young ; Azizi, Kobra ; Hjuler, Hans Aage ; Jang, Jong Hyun ; Ha, Heung Yong ; Henkensmeier, Dirk</creatorcontrib><description>[Display omitted] •meta-PBI membrane was pretreated with 10 M H2SO4.•Membrane swelled 55% in thickness, resulting in a more open structure.•Conductivity in H2SO4 increased 4 times to 9 mS/cm (6.5 mS/cm in VRFB electrolyte).•In VRFB, coulomb, voltage and energy efficiency were higher than for Nafion 212.•EE reached 89.6% @ 80 mA cm−2, and all efficiencies were stable over 135 cycles. Polybenzimidazole (PBI) has been considered as promising membrane material for all-vanadium redox flow batteries (VRFBs) due to its compact morphology that can hinder vanadium crossover. However, its 2–4 mS cm−1 proton conductivity remains a challenge to achieve high energy efficiency. Recently developed PBI membranes showed conductivity up to 18 mS cm−1 by pre-treatment with phosphoric acid (PA) and up to 56 mS cm−1 with KOH. However, since the operation of VRFB uses sulfuric acid (SA), pre-treatment with different chemicals generates chemical wastes. Here we investigate the effects of pre-treaments with SA at various concentrations and temperatures. The optimized membrane (25C_10M, pretreated at 25 °C in 10M SA) increases its thickness during the treatment from 10 to 17 µm, and shows an improved conductivity in 2 M SA of 9.1 mS cm−1. In V4+ containing electrolyte, the area specific resistance was 262 mΩ cm2 , which is 3.3 and 1.7 times better than for 10 µm thick standard PBI (13 µm thick in 2 M SA) and 54 µm thick Nafion 212 membranes, respectively. The selectivity is 458x104 S min cm−3, 7, 30, and 29 times better than for PA, KOH pre-swelling, and Nafion 212 membranes, respectively. A VRFB performance test with a 17 µm thick 25C_10M PBI membrane showed an energy efficiency of 89.6% at 80 mA cm−2.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2022.134902</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>interchain spacing ; Polybenzimidazole ; Pre-treatment ; Redox flow battery ; Sulfuric acid</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-05, Vol.435, p.134902, Article 134902</ispartof><rights>2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-3ba7e380fdcbdc1447d972171fb45a6e8bcc0328064dd1be63a1c9e63be0ad9a3</citedby><cites>FETCH-LOGICAL-c340t-3ba7e380fdcbdc1447d972171fb45a6e8bcc0328064dd1be63a1c9e63be0ad9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mara Ikhsan, Muhammad</creatorcontrib><creatorcontrib>Abbas, Saleem</creatorcontrib><creatorcontrib>Do, Xuan Huy</creatorcontrib><creatorcontrib>Choi, Seung-Young</creatorcontrib><creatorcontrib>Azizi, Kobra</creatorcontrib><creatorcontrib>Hjuler, Hans Aage</creatorcontrib><creatorcontrib>Jang, Jong Hyun</creatorcontrib><creatorcontrib>Ha, Heung Yong</creatorcontrib><creatorcontrib>Henkensmeier, Dirk</creatorcontrib><title>Polybenzimidazole membranes for vanadium redox flow batteries: Effect of sulfuric acid doping conditions</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>[Display omitted] •meta-PBI membrane was pretreated with 10 M H2SO4.•Membrane swelled 55% in thickness, resulting in a more open structure.•Conductivity in H2SO4 increased 4 times to 9 mS/cm (6.5 mS/cm in VRFB electrolyte).•In VRFB, coulomb, voltage and energy efficiency were higher than for Nafion 212.•EE reached 89.6% @ 80 mA cm−2, and all efficiencies were stable over 135 cycles. Polybenzimidazole (PBI) has been considered as promising membrane material for all-vanadium redox flow batteries (VRFBs) due to its compact morphology that can hinder vanadium crossover. However, its 2–4 mS cm−1 proton conductivity remains a challenge to achieve high energy efficiency. Recently developed PBI membranes showed conductivity up to 18 mS cm−1 by pre-treatment with phosphoric acid (PA) and up to 56 mS cm−1 with KOH. However, since the operation of VRFB uses sulfuric acid (SA), pre-treatment with different chemicals generates chemical wastes. Here we investigate the effects of pre-treaments with SA at various concentrations and temperatures. The optimized membrane (25C_10M, pretreated at 25 °C in 10M SA) increases its thickness during the treatment from 10 to 17 µm, and shows an improved conductivity in 2 M SA of 9.1 mS cm−1. In V4+ containing electrolyte, the area specific resistance was 262 mΩ cm2 , which is 3.3 and 1.7 times better than for 10 µm thick standard PBI (13 µm thick in 2 M SA) and 54 µm thick Nafion 212 membranes, respectively. The selectivity is 458x104 S min cm−3, 7, 30, and 29 times better than for PA, KOH pre-swelling, and Nafion 212 membranes, respectively. A VRFB performance test with a 17 µm thick 25C_10M PBI membrane showed an energy efficiency of 89.6% at 80 mA cm−2.</description><subject>interchain spacing</subject><subject>Polybenzimidazole</subject><subject>Pre-treatment</subject><subject>Redox flow battery</subject><subject>Sulfuric acid</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EEmX4AHb-gQRPzQArVJVBqgQLWFsensFRYld2Wmi_nlRlzerezXl69yB0Q0lJCa1uu9JAVzLCWEm5aAk7QTPa1LzgjLLTqfNmXjStqM_RRc4dIaRqaTtDX2-x32kIez94q_axBzzAoJMKkLGLCW9VUNZvBpzAxh_s-viNtRpHSB7yHV46B2bE0eG86d0meYOV8RbbuPbhE5sYrB99DPkKnTnVZ7j-y0v08bh8XzwXq9enl8XDqjBckLHgWtXAG-Ks0dZQIWrb1ozW1GkxVxU02hjCWUMqYS3VUHFFTTuFBqJsq_glose7JsWcEzi5Tn5QaScpkQdVspOTKnlQJY-qJub-yMD02NZDktl4CAasT9M6aaP_h_4FAvl0Uw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Mara Ikhsan, Muhammad</creator><creator>Abbas, Saleem</creator><creator>Do, Xuan Huy</creator><creator>Choi, Seung-Young</creator><creator>Azizi, Kobra</creator><creator>Hjuler, Hans Aage</creator><creator>Jang, Jong Hyun</creator><creator>Ha, Heung Yong</creator><creator>Henkensmeier, Dirk</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220501</creationdate><title>Polybenzimidazole membranes for vanadium redox flow batteries: Effect of sulfuric acid doping conditions</title><author>Mara Ikhsan, Muhammad ; Abbas, Saleem ; Do, Xuan Huy ; Choi, Seung-Young ; Azizi, Kobra ; Hjuler, Hans Aage ; Jang, Jong Hyun ; Ha, Heung Yong ; Henkensmeier, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-3ba7e380fdcbdc1447d972171fb45a6e8bcc0328064dd1be63a1c9e63be0ad9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>interchain spacing</topic><topic>Polybenzimidazole</topic><topic>Pre-treatment</topic><topic>Redox flow battery</topic><topic>Sulfuric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mara Ikhsan, Muhammad</creatorcontrib><creatorcontrib>Abbas, Saleem</creatorcontrib><creatorcontrib>Do, Xuan Huy</creatorcontrib><creatorcontrib>Choi, Seung-Young</creatorcontrib><creatorcontrib>Azizi, Kobra</creatorcontrib><creatorcontrib>Hjuler, Hans Aage</creatorcontrib><creatorcontrib>Jang, Jong Hyun</creatorcontrib><creatorcontrib>Ha, Heung Yong</creatorcontrib><creatorcontrib>Henkensmeier, Dirk</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mara Ikhsan, Muhammad</au><au>Abbas, Saleem</au><au>Do, Xuan Huy</au><au>Choi, Seung-Young</au><au>Azizi, Kobra</au><au>Hjuler, Hans Aage</au><au>Jang, Jong Hyun</au><au>Ha, Heung Yong</au><au>Henkensmeier, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polybenzimidazole membranes for vanadium redox flow batteries: Effect of sulfuric acid doping conditions</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>435</volume><spage>134902</spage><pages>134902-</pages><artnum>134902</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>[Display omitted] •meta-PBI membrane was pretreated with 10 M H2SO4.•Membrane swelled 55% in thickness, resulting in a more open structure.•Conductivity in H2SO4 increased 4 times to 9 mS/cm (6.5 mS/cm in VRFB electrolyte).•In VRFB, coulomb, voltage and energy efficiency were higher than for Nafion 212.•EE reached 89.6% @ 80 mA cm−2, and all efficiencies were stable over 135 cycles. Polybenzimidazole (PBI) has been considered as promising membrane material for all-vanadium redox flow batteries (VRFBs) due to its compact morphology that can hinder vanadium crossover. However, its 2–4 mS cm−1 proton conductivity remains a challenge to achieve high energy efficiency. Recently developed PBI membranes showed conductivity up to 18 mS cm−1 by pre-treatment with phosphoric acid (PA) and up to 56 mS cm−1 with KOH. However, since the operation of VRFB uses sulfuric acid (SA), pre-treatment with different chemicals generates chemical wastes. Here we investigate the effects of pre-treaments with SA at various concentrations and temperatures. The optimized membrane (25C_10M, pretreated at 25 °C in 10M SA) increases its thickness during the treatment from 10 to 17 µm, and shows an improved conductivity in 2 M SA of 9.1 mS cm−1. In V4+ containing electrolyte, the area specific resistance was 262 mΩ cm2 , which is 3.3 and 1.7 times better than for 10 µm thick standard PBI (13 µm thick in 2 M SA) and 54 µm thick Nafion 212 membranes, respectively. The selectivity is 458x104 S min cm−3, 7, 30, and 29 times better than for PA, KOH pre-swelling, and Nafion 212 membranes, respectively. A VRFB performance test with a 17 µm thick 25C_10M PBI membrane showed an energy efficiency of 89.6% at 80 mA cm−2.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2022.134902</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-05, Vol.435, p.134902, Article 134902
issn 1385-8947
1873-3212
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2022_134902
source Elsevier
subjects interchain spacing
Polybenzimidazole
Pre-treatment
Redox flow battery
Sulfuric acid
title Polybenzimidazole membranes for vanadium redox flow batteries: Effect of sulfuric acid doping conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polybenzimidazole%20membranes%20for%20vanadium%20redox%20flow%20batteries:%20Effect%20of%20sulfuric%20acid%20doping%20conditions&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Mara%20Ikhsan,%20Muhammad&rft.date=2022-05-01&rft.volume=435&rft.spage=134902&rft.pages=134902-&rft.artnum=134902&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2022.134902&rft_dat=%3Celsevier_cross%3ES1385894722004090%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-3ba7e380fdcbdc1447d972171fb45a6e8bcc0328064dd1be63a1c9e63be0ad9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true