Loading…

CeO2-NiO/N,O-rich porous carbon derived from covalent-organic framework for enhanced Li-storage

[Display omitted] •A novel N,O-rich COFDHNDA-BTH is synthesized as precursors to prepare Ni-NiO/NC and CeO2-NiO/NC.•Lots of 15 nm-sized Ni-NiO and 18 nm-sized CeO2-NiO are uniformly arrayed on NC in Ni-NiO/NC and CeO2-NiO/NC.•COFDHNDA-BTH-derived N,O-doped porous carbon provides more active sites to...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2022-08, Vol.442, p.136298, Article 136298
Main Authors: Gu, Fengling, Chen, Kaixiang, Du, Yan, Song, Yonghai, Wang, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c227t-98d8ccdf75eb471f97501ada1cc1c16baef3ebf6e9348b1963e998e2b324924b3
cites cdi_FETCH-LOGICAL-c227t-98d8ccdf75eb471f97501ada1cc1c16baef3ebf6e9348b1963e998e2b324924b3
container_end_page
container_issue
container_start_page 136298
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 442
creator Gu, Fengling
Chen, Kaixiang
Du, Yan
Song, Yonghai
Wang, Li
description [Display omitted] •A novel N,O-rich COFDHNDA-BTH is synthesized as precursors to prepare Ni-NiO/NC and CeO2-NiO/NC.•Lots of 15 nm-sized Ni-NiO and 18 nm-sized CeO2-NiO are uniformly arrayed on NC in Ni-NiO/NC and CeO2-NiO/NC.•COFDHNDA-BTH-derived N,O-doped porous carbon provides more active sites to anchor Ni-NiO and CeO2-NiO.•Cerium doping causes a larger crystal lattice for Li+ storage/transfer and enhances tenacity of composites.•The Ni-NiO/NC and CeO2-NiO/NC show long cycling stability and high reversible capacities. Heteroatom-doped porous carbon is crucial to improve energy storage performance of transition metal oxide (TMO)/carbon nanocomposites. However, their traditional template synthesis, and chemical or thermal activation methods are cumbersome and inefficient. Crystalline covalent-organic framework (COF) has customizable structure and abundant heteroatoms. Its abundant heteroatoms and ordered network structure make it to be promising precursors to prepare TMO/carbon nanocomposites. Herein, a new N,O-rich COFDHNDA-BTH with ribbon morphology was synthesized by amine-aldehyde condensation reaction. Using COFDHNDA-BTH as precursors, CeO2-doped NiO heterostructures/N,O-rich porous carbon (CeO2-NiO/NC) nanocomposites were synthesized and successfully applied for enhanced Li-storage. The N,O-rich COFDHNDA-BTH as precursors can not only avoid the cumbersome procedures and low efficiency of traditional template method but also provide more uniformly distributed active sites to anchor CeO2-NiO and hierarchical pores. Thanks to larger lattice space provided by doping of large radius cerium for Li+ insertion/de-insertion and uniformly distributed small CeO2-NiO nanoparticles with a diameter of 18 nm, the obtained 1/5CeO2-NiO/NC exhibits excellent Li-storage performance with a capacity of 852 mAh g−1 after 500 cycles at 1000 mA g−1. The simple yet efficient strategy provides a new guide to prepare CeO2-doped TMO heterostructures/NC nanocomposites for enhanced Li-storage.
doi_str_mv 10.1016/j.cej.2022.136298
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2022_136298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894722017958</els_id><sourcerecordid>S1385894722017958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-98d8ccdf75eb471f97501ada1cc1c16baef3ebf6e9348b1963e998e2b324924b3</originalsourceid><addsrcrecordid>eNp9kM9OwzAMhyMEEmPwANz6AKTLn65NxAlNMJCm9QLnKHWdLWVrpqQM8fZ0GmdOtqzfZ9kfIfec5ZzxctblgF0umBA5l6XQ6oJMuKoklYKLy7GXak6VLqprcpNSxxgrNdcTYhZYC7r29Wz9UNPoYZsdQgxfKQMbm9BnLUZ_xDZzMewzCEe7w36gIW5s72Gc2j1-h_iZuRAz7Le2hzG88jQNIdoN3pIrZ3cJ7_7qlHy8PL8vXumqXr4tnlYUhKgGqlWrAFpXzbEpKu50NWfctpYDcOBlY9FJbFyJWhaq4bqUqLVC0UhRaFE0ckr4eS_EkFJEZw7R7238MZyZkyHTmdGQORkyZ0Mj83hmcDzs6DGaBB5PD_iIMJg2-H_oX1RmbyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CeO2-NiO/N,O-rich porous carbon derived from covalent-organic framework for enhanced Li-storage</title><source>Elsevier</source><creator>Gu, Fengling ; Chen, Kaixiang ; Du, Yan ; Song, Yonghai ; Wang, Li</creator><creatorcontrib>Gu, Fengling ; Chen, Kaixiang ; Du, Yan ; Song, Yonghai ; Wang, Li</creatorcontrib><description>[Display omitted] •A novel N,O-rich COFDHNDA-BTH is synthesized as precursors to prepare Ni-NiO/NC and CeO2-NiO/NC.•Lots of 15 nm-sized Ni-NiO and 18 nm-sized CeO2-NiO are uniformly arrayed on NC in Ni-NiO/NC and CeO2-NiO/NC.•COFDHNDA-BTH-derived N,O-doped porous carbon provides more active sites to anchor Ni-NiO and CeO2-NiO.•Cerium doping causes a larger crystal lattice for Li+ storage/transfer and enhances tenacity of composites.•The Ni-NiO/NC and CeO2-NiO/NC show long cycling stability and high reversible capacities. Heteroatom-doped porous carbon is crucial to improve energy storage performance of transition metal oxide (TMO)/carbon nanocomposites. However, their traditional template synthesis, and chemical or thermal activation methods are cumbersome and inefficient. Crystalline covalent-organic framework (COF) has customizable structure and abundant heteroatoms. Its abundant heteroatoms and ordered network structure make it to be promising precursors to prepare TMO/carbon nanocomposites. Herein, a new N,O-rich COFDHNDA-BTH with ribbon morphology was synthesized by amine-aldehyde condensation reaction. Using COFDHNDA-BTH as precursors, CeO2-doped NiO heterostructures/N,O-rich porous carbon (CeO2-NiO/NC) nanocomposites were synthesized and successfully applied for enhanced Li-storage. The N,O-rich COFDHNDA-BTH as precursors can not only avoid the cumbersome procedures and low efficiency of traditional template method but also provide more uniformly distributed active sites to anchor CeO2-NiO and hierarchical pores. Thanks to larger lattice space provided by doping of large radius cerium for Li+ insertion/de-insertion and uniformly distributed small CeO2-NiO nanoparticles with a diameter of 18 nm, the obtained 1/5CeO2-NiO/NC exhibits excellent Li-storage performance with a capacity of 852 mAh g−1 after 500 cycles at 1000 mA g−1. The simple yet efficient strategy provides a new guide to prepare CeO2-doped TMO heterostructures/NC nanocomposites for enhanced Li-storage.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2022.136298</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cerium dioxide ; Covalent-organic framework ; Heteroatom-doped porous carbon ; Lithium-ion batteries ; Nanocomposites ; Nickel oxide</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-08, Vol.442, p.136298, Article 136298</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-98d8ccdf75eb471f97501ada1cc1c16baef3ebf6e9348b1963e998e2b324924b3</citedby><cites>FETCH-LOGICAL-c227t-98d8ccdf75eb471f97501ada1cc1c16baef3ebf6e9348b1963e998e2b324924b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gu, Fengling</creatorcontrib><creatorcontrib>Chen, Kaixiang</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><creatorcontrib>Song, Yonghai</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><title>CeO2-NiO/N,O-rich porous carbon derived from covalent-organic framework for enhanced Li-storage</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>[Display omitted] •A novel N,O-rich COFDHNDA-BTH is synthesized as precursors to prepare Ni-NiO/NC and CeO2-NiO/NC.•Lots of 15 nm-sized Ni-NiO and 18 nm-sized CeO2-NiO are uniformly arrayed on NC in Ni-NiO/NC and CeO2-NiO/NC.•COFDHNDA-BTH-derived N,O-doped porous carbon provides more active sites to anchor Ni-NiO and CeO2-NiO.•Cerium doping causes a larger crystal lattice for Li+ storage/transfer and enhances tenacity of composites.•The Ni-NiO/NC and CeO2-NiO/NC show long cycling stability and high reversible capacities. Heteroatom-doped porous carbon is crucial to improve energy storage performance of transition metal oxide (TMO)/carbon nanocomposites. However, their traditional template synthesis, and chemical or thermal activation methods are cumbersome and inefficient. Crystalline covalent-organic framework (COF) has customizable structure and abundant heteroatoms. Its abundant heteroatoms and ordered network structure make it to be promising precursors to prepare TMO/carbon nanocomposites. Herein, a new N,O-rich COFDHNDA-BTH with ribbon morphology was synthesized by amine-aldehyde condensation reaction. Using COFDHNDA-BTH as precursors, CeO2-doped NiO heterostructures/N,O-rich porous carbon (CeO2-NiO/NC) nanocomposites were synthesized and successfully applied for enhanced Li-storage. The N,O-rich COFDHNDA-BTH as precursors can not only avoid the cumbersome procedures and low efficiency of traditional template method but also provide more uniformly distributed active sites to anchor CeO2-NiO and hierarchical pores. Thanks to larger lattice space provided by doping of large radius cerium for Li+ insertion/de-insertion and uniformly distributed small CeO2-NiO nanoparticles with a diameter of 18 nm, the obtained 1/5CeO2-NiO/NC exhibits excellent Li-storage performance with a capacity of 852 mAh g−1 after 500 cycles at 1000 mA g−1. The simple yet efficient strategy provides a new guide to prepare CeO2-doped TMO heterostructures/NC nanocomposites for enhanced Li-storage.</description><subject>Cerium dioxide</subject><subject>Covalent-organic framework</subject><subject>Heteroatom-doped porous carbon</subject><subject>Lithium-ion batteries</subject><subject>Nanocomposites</subject><subject>Nickel oxide</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMhyMEEmPwANz6AKTLn65NxAlNMJCm9QLnKHWdLWVrpqQM8fZ0GmdOtqzfZ9kfIfec5ZzxctblgF0umBA5l6XQ6oJMuKoklYKLy7GXak6VLqprcpNSxxgrNdcTYhZYC7r29Wz9UNPoYZsdQgxfKQMbm9BnLUZ_xDZzMewzCEe7w36gIW5s72Gc2j1-h_iZuRAz7Le2hzG88jQNIdoN3pIrZ3cJ7_7qlHy8PL8vXumqXr4tnlYUhKgGqlWrAFpXzbEpKu50NWfctpYDcOBlY9FJbFyJWhaq4bqUqLVC0UhRaFE0ckr4eS_EkFJEZw7R7238MZyZkyHTmdGQORkyZ0Mj83hmcDzs6DGaBB5PD_iIMJg2-H_oX1RmbyM</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Gu, Fengling</creator><creator>Chen, Kaixiang</creator><creator>Du, Yan</creator><creator>Song, Yonghai</creator><creator>Wang, Li</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220815</creationdate><title>CeO2-NiO/N,O-rich porous carbon derived from covalent-organic framework for enhanced Li-storage</title><author>Gu, Fengling ; Chen, Kaixiang ; Du, Yan ; Song, Yonghai ; Wang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-98d8ccdf75eb471f97501ada1cc1c16baef3ebf6e9348b1963e998e2b324924b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cerium dioxide</topic><topic>Covalent-organic framework</topic><topic>Heteroatom-doped porous carbon</topic><topic>Lithium-ion batteries</topic><topic>Nanocomposites</topic><topic>Nickel oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Fengling</creatorcontrib><creatorcontrib>Chen, Kaixiang</creatorcontrib><creatorcontrib>Du, Yan</creatorcontrib><creatorcontrib>Song, Yonghai</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Fengling</au><au>Chen, Kaixiang</au><au>Du, Yan</au><au>Song, Yonghai</au><au>Wang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CeO2-NiO/N,O-rich porous carbon derived from covalent-organic framework for enhanced Li-storage</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2022-08-15</date><risdate>2022</risdate><volume>442</volume><spage>136298</spage><pages>136298-</pages><artnum>136298</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>[Display omitted] •A novel N,O-rich COFDHNDA-BTH is synthesized as precursors to prepare Ni-NiO/NC and CeO2-NiO/NC.•Lots of 15 nm-sized Ni-NiO and 18 nm-sized CeO2-NiO are uniformly arrayed on NC in Ni-NiO/NC and CeO2-NiO/NC.•COFDHNDA-BTH-derived N,O-doped porous carbon provides more active sites to anchor Ni-NiO and CeO2-NiO.•Cerium doping causes a larger crystal lattice for Li+ storage/transfer and enhances tenacity of composites.•The Ni-NiO/NC and CeO2-NiO/NC show long cycling stability and high reversible capacities. Heteroatom-doped porous carbon is crucial to improve energy storage performance of transition metal oxide (TMO)/carbon nanocomposites. However, their traditional template synthesis, and chemical or thermal activation methods are cumbersome and inefficient. Crystalline covalent-organic framework (COF) has customizable structure and abundant heteroatoms. Its abundant heteroatoms and ordered network structure make it to be promising precursors to prepare TMO/carbon nanocomposites. Herein, a new N,O-rich COFDHNDA-BTH with ribbon morphology was synthesized by amine-aldehyde condensation reaction. Using COFDHNDA-BTH as precursors, CeO2-doped NiO heterostructures/N,O-rich porous carbon (CeO2-NiO/NC) nanocomposites were synthesized and successfully applied for enhanced Li-storage. The N,O-rich COFDHNDA-BTH as precursors can not only avoid the cumbersome procedures and low efficiency of traditional template method but also provide more uniformly distributed active sites to anchor CeO2-NiO and hierarchical pores. Thanks to larger lattice space provided by doping of large radius cerium for Li+ insertion/de-insertion and uniformly distributed small CeO2-NiO nanoparticles with a diameter of 18 nm, the obtained 1/5CeO2-NiO/NC exhibits excellent Li-storage performance with a capacity of 852 mAh g−1 after 500 cycles at 1000 mA g−1. The simple yet efficient strategy provides a new guide to prepare CeO2-doped TMO heterostructures/NC nanocomposites for enhanced Li-storage.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2022.136298</doi></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-08, Vol.442, p.136298, Article 136298
issn 1385-8947
1873-3212
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2022_136298
source Elsevier
subjects Cerium dioxide
Covalent-organic framework
Heteroatom-doped porous carbon
Lithium-ion batteries
Nanocomposites
Nickel oxide
title CeO2-NiO/N,O-rich porous carbon derived from covalent-organic framework for enhanced Li-storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CeO2-NiO/N,O-rich%20porous%20carbon%20derived%20from%20covalent-organic%20framework%20for%20enhanced%20Li-storage&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Gu,%20Fengling&rft.date=2022-08-15&rft.volume=442&rft.spage=136298&rft.pages=136298-&rft.artnum=136298&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2022.136298&rft_dat=%3Celsevier_cross%3ES1385894722017958%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-98d8ccdf75eb471f97501ada1cc1c16baef3ebf6e9348b1963e998e2b324924b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true