Loading…

COX-free LOHC Dehydrogenation in a Heatpipe Reformer Highly Integrated with a Hydrogen Burner

This article elucidates the design and operation of a thermochemical methylcyclohexane dehydrogenator closely integrated with a hydrogen burner. The as-developed module offers solutions for COX-free hydrogen storage and release in on-board or mobile applications. [Display omitted] •Exothermic H2 com...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2022-12, Vol.449, p.137679, Article 137679
Main Authors: Badakhsh, Arash, Song, Donghyun, Moon, Seongeun, Jeong, Hyangsoo, Sohn, Hyuntae, Woo Nam, Suk, Soon Kim, Pyung, Hui Seo, Ji, Kim, Yongwoo, Lee, Jaeyong, Woo Choung, Jin, Kim, Yongmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-9917d5a10613178150777c9e183deb783a148d64313df2d8dd62c3a9408508963
cites cdi_FETCH-LOGICAL-c297t-9917d5a10613178150777c9e183deb783a148d64313df2d8dd62c3a9408508963
container_end_page
container_issue
container_start_page 137679
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 449
creator Badakhsh, Arash
Song, Donghyun
Moon, Seongeun
Jeong, Hyangsoo
Sohn, Hyuntae
Woo Nam, Suk
Soon Kim, Pyung
Hui Seo, Ji
Kim, Yongwoo
Lee, Jaeyong
Woo Choung, Jin
Kim, Yongmin
description This article elucidates the design and operation of a thermochemical methylcyclohexane dehydrogenator closely integrated with a hydrogen burner. The as-developed module offers solutions for COX-free hydrogen storage and release in on-board or mobile applications. [Display omitted] •Exothermic H2 combustion is thermally coupled with endothermic MCH dehydrogenation.•A LOHC reformer with homogenized temperature is developed.•Maximum dehydrogenation and reforming efficiencies of 13% and 80% are obtained.•Exhaust heat loss is reduced by 150% using the sleeve-type H2 burner.•Our design offers solutions for COX-free H2 release in on-board applications. We introduce a thermally self-sustained reactor concept highly integrated with a heat source to produce hydrogen (H2) stored in methylcyclohexane (MCH), the liquid organic hydrogen carrier (LOHC) with the highest technological readiness. This work is prompted to promote the use of LOHC for COX-free H2 production for on-board or mobile applications. To this end, the heat-pipe dehydrogenator, an H2 burner, and a thermal management module are developed. We have performed a numerical simulation to optimize reactor wall materials and configuration and experimentally tested it to reveal the feasibility of such a highly integrated system to maintain uniform reaction temperature at 320 – 360 °C, optimal for MCH dehydrogenation. In the proposed design, the heat required for the reaction is provided by combustion of a part of released H2, and transferred via a gas-liquid organic phase-change material (PCM). In the as-developed H2 generator with 50.4 NLH2/h (equivalent to 138.5 WLHV-basis), we achieve a high reforming efficiency of 80% with an MCH conversion of >99.7%. We expect the as-developed system to be a stepping stone to expand the use of LOHC in versatile applications requiring carbon-free H2 storage and production after further engineering efforts to enhance heat recovery and thermal circulation.
doi_str_mv 10.1016/j.cej.2022.137679
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2022_137679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894722031667</els_id><sourcerecordid>S1385894722031667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-9917d5a10613178150777c9e183deb783a148d64313df2d8dd62c3a9408508963</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKcP4F1eoDUnaZsEr7Q6OxgMRMEbCTE53VK2dqRV2dvbsV17df6L8_38fITcAkuBQXHXpA6blDPOUxCykPqMTEBJkQgO_HzMQuWJ0pm8JFd93zDGCg16Qj7L5UdSR0S6WFYlfcL13sduha0dQtfS0FJLK7TDLuyQvmLdxS1GWoXVerOn83bAVbQDevobhvXh9UTTx-_YYrwmF7Xd9HhzulPyPnt-K6tksXyZlw-LxHEth0RrkD63wAoQIBXkTErpNIISHr-kEhYy5YtMgPA198r7gjthdcZUzpQuxJTAsdfFru8j1mYXw9bGvQFmDn5MY0Y_5uDHHP2MzP2RwXHYT8BoehewdehDRDcY34V_6D-1yGv-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>COX-free LOHC Dehydrogenation in a Heatpipe Reformer Highly Integrated with a Hydrogen Burner</title><source>Elsevier</source><creator>Badakhsh, Arash ; Song, Donghyun ; Moon, Seongeun ; Jeong, Hyangsoo ; Sohn, Hyuntae ; Woo Nam, Suk ; Soon Kim, Pyung ; Hui Seo, Ji ; Kim, Yongwoo ; Lee, Jaeyong ; Woo Choung, Jin ; Kim, Yongmin</creator><creatorcontrib>Badakhsh, Arash ; Song, Donghyun ; Moon, Seongeun ; Jeong, Hyangsoo ; Sohn, Hyuntae ; Woo Nam, Suk ; Soon Kim, Pyung ; Hui Seo, Ji ; Kim, Yongwoo ; Lee, Jaeyong ; Woo Choung, Jin ; Kim, Yongmin</creatorcontrib><description>This article elucidates the design and operation of a thermochemical methylcyclohexane dehydrogenator closely integrated with a hydrogen burner. The as-developed module offers solutions for COX-free hydrogen storage and release in on-board or mobile applications. [Display omitted] •Exothermic H2 combustion is thermally coupled with endothermic MCH dehydrogenation.•A LOHC reformer with homogenized temperature is developed.•Maximum dehydrogenation and reforming efficiencies of 13% and 80% are obtained.•Exhaust heat loss is reduced by 150% using the sleeve-type H2 burner.•Our design offers solutions for COX-free H2 release in on-board applications. We introduce a thermally self-sustained reactor concept highly integrated with a heat source to produce hydrogen (H2) stored in methylcyclohexane (MCH), the liquid organic hydrogen carrier (LOHC) with the highest technological readiness. This work is prompted to promote the use of LOHC for COX-free H2 production for on-board or mobile applications. To this end, the heat-pipe dehydrogenator, an H2 burner, and a thermal management module are developed. We have performed a numerical simulation to optimize reactor wall materials and configuration and experimentally tested it to reveal the feasibility of such a highly integrated system to maintain uniform reaction temperature at 320 – 360 °C, optimal for MCH dehydrogenation. In the proposed design, the heat required for the reaction is provided by combustion of a part of released H2, and transferred via a gas-liquid organic phase-change material (PCM). In the as-developed H2 generator with 50.4 NLH2/h (equivalent to 138.5 WLHV-basis), we achieve a high reforming efficiency of 80% with an MCH conversion of &gt;99.7%. We expect the as-developed system to be a stepping stone to expand the use of LOHC in versatile applications requiring carbon-free H2 storage and production after further engineering efforts to enhance heat recovery and thermal circulation.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2022.137679</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Autothermal reactor design ; Heat transfer ; Heatpipe reformer ; Hydrogen combustion ; LOHC dehydrogenation ; Phase-change material ; Thermochemistry</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-12, Vol.449, p.137679, Article 137679</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-9917d5a10613178150777c9e183deb783a148d64313df2d8dd62c3a9408508963</citedby><cites>FETCH-LOGICAL-c297t-9917d5a10613178150777c9e183deb783a148d64313df2d8dd62c3a9408508963</cites><orcidid>0000-0003-4081-1943 ; 0000-0003-3152-3405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Badakhsh, Arash</creatorcontrib><creatorcontrib>Song, Donghyun</creatorcontrib><creatorcontrib>Moon, Seongeun</creatorcontrib><creatorcontrib>Jeong, Hyangsoo</creatorcontrib><creatorcontrib>Sohn, Hyuntae</creatorcontrib><creatorcontrib>Woo Nam, Suk</creatorcontrib><creatorcontrib>Soon Kim, Pyung</creatorcontrib><creatorcontrib>Hui Seo, Ji</creatorcontrib><creatorcontrib>Kim, Yongwoo</creatorcontrib><creatorcontrib>Lee, Jaeyong</creatorcontrib><creatorcontrib>Woo Choung, Jin</creatorcontrib><creatorcontrib>Kim, Yongmin</creatorcontrib><title>COX-free LOHC Dehydrogenation in a Heatpipe Reformer Highly Integrated with a Hydrogen Burner</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>This article elucidates the design and operation of a thermochemical methylcyclohexane dehydrogenator closely integrated with a hydrogen burner. The as-developed module offers solutions for COX-free hydrogen storage and release in on-board or mobile applications. [Display omitted] •Exothermic H2 combustion is thermally coupled with endothermic MCH dehydrogenation.•A LOHC reformer with homogenized temperature is developed.•Maximum dehydrogenation and reforming efficiencies of 13% and 80% are obtained.•Exhaust heat loss is reduced by 150% using the sleeve-type H2 burner.•Our design offers solutions for COX-free H2 release in on-board applications. We introduce a thermally self-sustained reactor concept highly integrated with a heat source to produce hydrogen (H2) stored in methylcyclohexane (MCH), the liquid organic hydrogen carrier (LOHC) with the highest technological readiness. This work is prompted to promote the use of LOHC for COX-free H2 production for on-board or mobile applications. To this end, the heat-pipe dehydrogenator, an H2 burner, and a thermal management module are developed. We have performed a numerical simulation to optimize reactor wall materials and configuration and experimentally tested it to reveal the feasibility of such a highly integrated system to maintain uniform reaction temperature at 320 – 360 °C, optimal for MCH dehydrogenation. In the proposed design, the heat required for the reaction is provided by combustion of a part of released H2, and transferred via a gas-liquid organic phase-change material (PCM). In the as-developed H2 generator with 50.4 NLH2/h (equivalent to 138.5 WLHV-basis), we achieve a high reforming efficiency of 80% with an MCH conversion of &gt;99.7%. We expect the as-developed system to be a stepping stone to expand the use of LOHC in versatile applications requiring carbon-free H2 storage and production after further engineering efforts to enhance heat recovery and thermal circulation.</description><subject>Autothermal reactor design</subject><subject>Heat transfer</subject><subject>Heatpipe reformer</subject><subject>Hydrogen combustion</subject><subject>LOHC dehydrogenation</subject><subject>Phase-change material</subject><subject>Thermochemistry</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOKcP4F1eoDUnaZsEr7Q6OxgMRMEbCTE53VK2dqRV2dvbsV17df6L8_38fITcAkuBQXHXpA6blDPOUxCykPqMTEBJkQgO_HzMQuWJ0pm8JFd93zDGCg16Qj7L5UdSR0S6WFYlfcL13sduha0dQtfS0FJLK7TDLuyQvmLdxS1GWoXVerOn83bAVbQDevobhvXh9UTTx-_YYrwmF7Xd9HhzulPyPnt-K6tksXyZlw-LxHEth0RrkD63wAoQIBXkTErpNIISHr-kEhYy5YtMgPA198r7gjthdcZUzpQuxJTAsdfFru8j1mYXw9bGvQFmDn5MY0Y_5uDHHP2MzP2RwXHYT8BoehewdehDRDcY34V_6D-1yGv-</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Badakhsh, Arash</creator><creator>Song, Donghyun</creator><creator>Moon, Seongeun</creator><creator>Jeong, Hyangsoo</creator><creator>Sohn, Hyuntae</creator><creator>Woo Nam, Suk</creator><creator>Soon Kim, Pyung</creator><creator>Hui Seo, Ji</creator><creator>Kim, Yongwoo</creator><creator>Lee, Jaeyong</creator><creator>Woo Choung, Jin</creator><creator>Kim, Yongmin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4081-1943</orcidid><orcidid>https://orcid.org/0000-0003-3152-3405</orcidid></search><sort><creationdate>202212</creationdate><title>COX-free LOHC Dehydrogenation in a Heatpipe Reformer Highly Integrated with a Hydrogen Burner</title><author>Badakhsh, Arash ; Song, Donghyun ; Moon, Seongeun ; Jeong, Hyangsoo ; Sohn, Hyuntae ; Woo Nam, Suk ; Soon Kim, Pyung ; Hui Seo, Ji ; Kim, Yongwoo ; Lee, Jaeyong ; Woo Choung, Jin ; Kim, Yongmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-9917d5a10613178150777c9e183deb783a148d64313df2d8dd62c3a9408508963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autothermal reactor design</topic><topic>Heat transfer</topic><topic>Heatpipe reformer</topic><topic>Hydrogen combustion</topic><topic>LOHC dehydrogenation</topic><topic>Phase-change material</topic><topic>Thermochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badakhsh, Arash</creatorcontrib><creatorcontrib>Song, Donghyun</creatorcontrib><creatorcontrib>Moon, Seongeun</creatorcontrib><creatorcontrib>Jeong, Hyangsoo</creatorcontrib><creatorcontrib>Sohn, Hyuntae</creatorcontrib><creatorcontrib>Woo Nam, Suk</creatorcontrib><creatorcontrib>Soon Kim, Pyung</creatorcontrib><creatorcontrib>Hui Seo, Ji</creatorcontrib><creatorcontrib>Kim, Yongwoo</creatorcontrib><creatorcontrib>Lee, Jaeyong</creatorcontrib><creatorcontrib>Woo Choung, Jin</creatorcontrib><creatorcontrib>Kim, Yongmin</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badakhsh, Arash</au><au>Song, Donghyun</au><au>Moon, Seongeun</au><au>Jeong, Hyangsoo</au><au>Sohn, Hyuntae</au><au>Woo Nam, Suk</au><au>Soon Kim, Pyung</au><au>Hui Seo, Ji</au><au>Kim, Yongwoo</au><au>Lee, Jaeyong</au><au>Woo Choung, Jin</au><au>Kim, Yongmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COX-free LOHC Dehydrogenation in a Heatpipe Reformer Highly Integrated with a Hydrogen Burner</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2022-12</date><risdate>2022</risdate><volume>449</volume><spage>137679</spage><pages>137679-</pages><artnum>137679</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>This article elucidates the design and operation of a thermochemical methylcyclohexane dehydrogenator closely integrated with a hydrogen burner. The as-developed module offers solutions for COX-free hydrogen storage and release in on-board or mobile applications. [Display omitted] •Exothermic H2 combustion is thermally coupled with endothermic MCH dehydrogenation.•A LOHC reformer with homogenized temperature is developed.•Maximum dehydrogenation and reforming efficiencies of 13% and 80% are obtained.•Exhaust heat loss is reduced by 150% using the sleeve-type H2 burner.•Our design offers solutions for COX-free H2 release in on-board applications. We introduce a thermally self-sustained reactor concept highly integrated with a heat source to produce hydrogen (H2) stored in methylcyclohexane (MCH), the liquid organic hydrogen carrier (LOHC) with the highest technological readiness. This work is prompted to promote the use of LOHC for COX-free H2 production for on-board or mobile applications. To this end, the heat-pipe dehydrogenator, an H2 burner, and a thermal management module are developed. We have performed a numerical simulation to optimize reactor wall materials and configuration and experimentally tested it to reveal the feasibility of such a highly integrated system to maintain uniform reaction temperature at 320 – 360 °C, optimal for MCH dehydrogenation. In the proposed design, the heat required for the reaction is provided by combustion of a part of released H2, and transferred via a gas-liquid organic phase-change material (PCM). In the as-developed H2 generator with 50.4 NLH2/h (equivalent to 138.5 WLHV-basis), we achieve a high reforming efficiency of 80% with an MCH conversion of &gt;99.7%. We expect the as-developed system to be a stepping stone to expand the use of LOHC in versatile applications requiring carbon-free H2 storage and production after further engineering efforts to enhance heat recovery and thermal circulation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2022.137679</doi><orcidid>https://orcid.org/0000-0003-4081-1943</orcidid><orcidid>https://orcid.org/0000-0003-3152-3405</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-12, Vol.449, p.137679, Article 137679
issn 1385-8947
1873-3212
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2022_137679
source Elsevier
subjects Autothermal reactor design
Heat transfer
Heatpipe reformer
Hydrogen combustion
LOHC dehydrogenation
Phase-change material
Thermochemistry
title COX-free LOHC Dehydrogenation in a Heatpipe Reformer Highly Integrated with a Hydrogen Burner
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COX-free%20LOHC%20Dehydrogenation%20in%20a%20Heatpipe%20Reformer%20Highly%20Integrated%20with%20a%20Hydrogen%20Burner&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Badakhsh,%20Arash&rft.date=2022-12&rft.volume=449&rft.spage=137679&rft.pages=137679-&rft.artnum=137679&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2022.137679&rft_dat=%3Celsevier_cross%3ES1385894722031667%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-9917d5a10613178150777c9e183deb783a148d64313df2d8dd62c3a9408508963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true