Loading…

Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells

[Display omitted] •P doping can reduce the use of transition metals and the cost of raw materials.•Electronic conductivity, ion transport capacity, and hydration ability are boosted.•Oxygen surface exchange and bulk diffusivity are enhanced by P doping.•BSCFP0.05 has excellent ORR and WOR activity c...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2022-12, Vol.450, p.137787, Article 137787
Main Authors: Liu, Zuoqing, Cheng, Dongfang, Zhu, Yinlong, Liang, Mingzhuang, Yang, Meiting, Yang, Guangming, Ran, Ran, Wang, Wei, Zhou, Wei, Shao, Zongping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903
cites cdi_FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903
container_end_page
container_issue
container_start_page 137787
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 450
creator Liu, Zuoqing
Cheng, Dongfang
Zhu, Yinlong
Liang, Mingzhuang
Yang, Meiting
Yang, Guangming
Ran, Ran
Wang, Wei
Zhou, Wei
Shao, Zongping
description [Display omitted] •P doping can reduce the use of transition metals and the cost of raw materials.•Electronic conductivity, ion transport capacity, and hydration ability are boosted.•Oxygen surface exchange and bulk diffusivity are enhanced by P doping.•BSCFP0.05 has excellent ORR and WOR activity compared with BSCF.•Increased oxygen vacancy formation and hydration reaction are confirmed by DFT calculation. Driven by the demand for the sustainable regeneration of clean energy and high-efficiency low-cost energy conversion equipment, reversible proton ceramic electrochemical cells (R-PCECs), which are promising for realizing the mutual conversion between large-scale renewable electric energy and chemical energy, are receiving constant attention. Unfortunately, the sluggish activity of oxygen reduction reaction (ORR) and water oxidation reaction (WOR) for the oxygen electrode in the low and medium temperature ranges and the poor durability of reversible operation block the large-scale application of R-PCECs. Here, a novel oxygen electrode Ba0.5Sr0.5(Co0.8Fe0.2)0.95P0.05O3-δ (BSCFP0.05) with high electrochemical activity and stability is developed. By partially doping non-metallic phosphorus (P) element into the B-site transition metal of the classic oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), the electronic conductivity, ions (O2−/H+) transport capacity, and hydration ability are all significantly boosted. Especially, a single cell with the BSCFP0.05 electrode achieves an excellent peak power density of 842 mW cm−2 and an electrolysis current of −1000 mA cm−2 at 1.3 V at 600 °C. No significant attenuation appears during continuous conversion operation between the fuel cell model and the electrolysis cell model for up to 240 h with the BSCFP0.05 oxygen electrode. These results highly promise non-metal-doped oxygen electrode materials in practical R-PCECs.
doi_str_mv 10.1016/j.cej.2022.137787
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2022_137787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894722032740</els_id><sourcerecordid>S1385894722032740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903</originalsourceid><addsrcrecordid>eNp9kN1KxDAQhYMouK4-gHd5gdb8tE2CV7L4B4Igeh3SdOKmdpuSdBf37c2yeuvFMDMw53DmQ-iakpIS2tz0pYW-ZISxknIhpDhBCyoFLzij7DTPXNaFVJU4Rxcp9YSQRlG1QPNbaLdpxq1329HOPoxmwNM6pFxxm4ouTNDhCWLYpS8_Aw7f-08YMQxg5xg6wC5EHGEHMfl2ADzFMIcRW4hm4-3fnV1D3rK1hWFIl-jMmSHB1W9foo-H-_fVU_Hy-vi8unspLFNiLhhjVKkWnOSidsbwxklVg2mtdZXgsut419TSGS4aQaBpq4oApYZTx7hShC8RPfraGFKK4PQU_cbEvaZEH7DpXmds-oBNH7Flze1RAznYzkPUyXoYLXQ-5ld0F_w_6h9CP3kx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Zuoqing ; Cheng, Dongfang ; Zhu, Yinlong ; Liang, Mingzhuang ; Yang, Meiting ; Yang, Guangming ; Ran, Ran ; Wang, Wei ; Zhou, Wei ; Shao, Zongping</creator><creatorcontrib>Liu, Zuoqing ; Cheng, Dongfang ; Zhu, Yinlong ; Liang, Mingzhuang ; Yang, Meiting ; Yang, Guangming ; Ran, Ran ; Wang, Wei ; Zhou, Wei ; Shao, Zongping</creatorcontrib><description>[Display omitted] •P doping can reduce the use of transition metals and the cost of raw materials.•Electronic conductivity, ion transport capacity, and hydration ability are boosted.•Oxygen surface exchange and bulk diffusivity are enhanced by P doping.•BSCFP0.05 has excellent ORR and WOR activity compared with BSCF.•Increased oxygen vacancy formation and hydration reaction are confirmed by DFT calculation. Driven by the demand for the sustainable regeneration of clean energy and high-efficiency low-cost energy conversion equipment, reversible proton ceramic electrochemical cells (R-PCECs), which are promising for realizing the mutual conversion between large-scale renewable electric energy and chemical energy, are receiving constant attention. Unfortunately, the sluggish activity of oxygen reduction reaction (ORR) and water oxidation reaction (WOR) for the oxygen electrode in the low and medium temperature ranges and the poor durability of reversible operation block the large-scale application of R-PCECs. Here, a novel oxygen electrode Ba0.5Sr0.5(Co0.8Fe0.2)0.95P0.05O3-δ (BSCFP0.05) with high electrochemical activity and stability is developed. By partially doping non-metallic phosphorus (P) element into the B-site transition metal of the classic oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), the electronic conductivity, ions (O2−/H+) transport capacity, and hydration ability are all significantly boosted. Especially, a single cell with the BSCFP0.05 electrode achieves an excellent peak power density of 842 mW cm−2 and an electrolysis current of −1000 mA cm−2 at 1.3 V at 600 °C. No significant attenuation appears during continuous conversion operation between the fuel cell model and the electrolysis cell model for up to 240 h with the BSCFP0.05 oxygen electrode. These results highly promise non-metal-doped oxygen electrode materials in practical R-PCECs.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2022.137787</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Oxygen electrode ; Oxygen reduction reaction ; Phosphorus doping ; Protonic ceramic electrochemical cells ; Water oxidation reaction</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-12, Vol.450, p.137787, Article 137787</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903</citedby><cites>FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Zuoqing</creatorcontrib><creatorcontrib>Cheng, Dongfang</creatorcontrib><creatorcontrib>Zhu, Yinlong</creatorcontrib><creatorcontrib>Liang, Mingzhuang</creatorcontrib><creatorcontrib>Yang, Meiting</creatorcontrib><creatorcontrib>Yang, Guangming</creatorcontrib><creatorcontrib>Ran, Ran</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><title>Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>[Display omitted] •P doping can reduce the use of transition metals and the cost of raw materials.•Electronic conductivity, ion transport capacity, and hydration ability are boosted.•Oxygen surface exchange and bulk diffusivity are enhanced by P doping.•BSCFP0.05 has excellent ORR and WOR activity compared with BSCF.•Increased oxygen vacancy formation and hydration reaction are confirmed by DFT calculation. Driven by the demand for the sustainable regeneration of clean energy and high-efficiency low-cost energy conversion equipment, reversible proton ceramic electrochemical cells (R-PCECs), which are promising for realizing the mutual conversion between large-scale renewable electric energy and chemical energy, are receiving constant attention. Unfortunately, the sluggish activity of oxygen reduction reaction (ORR) and water oxidation reaction (WOR) for the oxygen electrode in the low and medium temperature ranges and the poor durability of reversible operation block the large-scale application of R-PCECs. Here, a novel oxygen electrode Ba0.5Sr0.5(Co0.8Fe0.2)0.95P0.05O3-δ (BSCFP0.05) with high electrochemical activity and stability is developed. By partially doping non-metallic phosphorus (P) element into the B-site transition metal of the classic oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), the electronic conductivity, ions (O2−/H+) transport capacity, and hydration ability are all significantly boosted. Especially, a single cell with the BSCFP0.05 electrode achieves an excellent peak power density of 842 mW cm−2 and an electrolysis current of −1000 mA cm−2 at 1.3 V at 600 °C. No significant attenuation appears during continuous conversion operation between the fuel cell model and the electrolysis cell model for up to 240 h with the BSCFP0.05 oxygen electrode. These results highly promise non-metal-doped oxygen electrode materials in practical R-PCECs.</description><subject>Oxygen electrode</subject><subject>Oxygen reduction reaction</subject><subject>Phosphorus doping</subject><subject>Protonic ceramic electrochemical cells</subject><subject>Water oxidation reaction</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KxDAQhYMouK4-gHd5gdb8tE2CV7L4B4Igeh3SdOKmdpuSdBf37c2yeuvFMDMw53DmQ-iakpIS2tz0pYW-ZISxknIhpDhBCyoFLzij7DTPXNaFVJU4Rxcp9YSQRlG1QPNbaLdpxq1329HOPoxmwNM6pFxxm4ouTNDhCWLYpS8_Aw7f-08YMQxg5xg6wC5EHGEHMfl2ADzFMIcRW4hm4-3fnV1D3rK1hWFIl-jMmSHB1W9foo-H-_fVU_Hy-vi8unspLFNiLhhjVKkWnOSidsbwxklVg2mtdZXgsut419TSGS4aQaBpq4oApYZTx7hShC8RPfraGFKK4PQU_cbEvaZEH7DpXmds-oBNH7Flze1RAznYzkPUyXoYLXQ-5ld0F_w_6h9CP3kx</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Liu, Zuoqing</creator><creator>Cheng, Dongfang</creator><creator>Zhu, Yinlong</creator><creator>Liang, Mingzhuang</creator><creator>Yang, Meiting</creator><creator>Yang, Guangming</creator><creator>Ran, Ran</creator><creator>Wang, Wei</creator><creator>Zhou, Wei</creator><creator>Shao, Zongping</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221215</creationdate><title>Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells</title><author>Liu, Zuoqing ; Cheng, Dongfang ; Zhu, Yinlong ; Liang, Mingzhuang ; Yang, Meiting ; Yang, Guangming ; Ran, Ran ; Wang, Wei ; Zhou, Wei ; Shao, Zongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Oxygen electrode</topic><topic>Oxygen reduction reaction</topic><topic>Phosphorus doping</topic><topic>Protonic ceramic electrochemical cells</topic><topic>Water oxidation reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zuoqing</creatorcontrib><creatorcontrib>Cheng, Dongfang</creatorcontrib><creatorcontrib>Zhu, Yinlong</creatorcontrib><creatorcontrib>Liang, Mingzhuang</creatorcontrib><creatorcontrib>Yang, Meiting</creatorcontrib><creatorcontrib>Yang, Guangming</creatorcontrib><creatorcontrib>Ran, Ran</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zuoqing</au><au>Cheng, Dongfang</au><au>Zhu, Yinlong</au><au>Liang, Mingzhuang</au><au>Yang, Meiting</au><au>Yang, Guangming</au><au>Ran, Ran</au><au>Wang, Wei</au><au>Zhou, Wei</au><au>Shao, Zongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2022-12-15</date><risdate>2022</risdate><volume>450</volume><spage>137787</spage><pages>137787-</pages><artnum>137787</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>[Display omitted] •P doping can reduce the use of transition metals and the cost of raw materials.•Electronic conductivity, ion transport capacity, and hydration ability are boosted.•Oxygen surface exchange and bulk diffusivity are enhanced by P doping.•BSCFP0.05 has excellent ORR and WOR activity compared with BSCF.•Increased oxygen vacancy formation and hydration reaction are confirmed by DFT calculation. Driven by the demand for the sustainable regeneration of clean energy and high-efficiency low-cost energy conversion equipment, reversible proton ceramic electrochemical cells (R-PCECs), which are promising for realizing the mutual conversion between large-scale renewable electric energy and chemical energy, are receiving constant attention. Unfortunately, the sluggish activity of oxygen reduction reaction (ORR) and water oxidation reaction (WOR) for the oxygen electrode in the low and medium temperature ranges and the poor durability of reversible operation block the large-scale application of R-PCECs. Here, a novel oxygen electrode Ba0.5Sr0.5(Co0.8Fe0.2)0.95P0.05O3-δ (BSCFP0.05) with high electrochemical activity and stability is developed. By partially doping non-metallic phosphorus (P) element into the B-site transition metal of the classic oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), the electronic conductivity, ions (O2−/H+) transport capacity, and hydration ability are all significantly boosted. Especially, a single cell with the BSCFP0.05 electrode achieves an excellent peak power density of 842 mW cm−2 and an electrolysis current of −1000 mA cm−2 at 1.3 V at 600 °C. No significant attenuation appears during continuous conversion operation between the fuel cell model and the electrolysis cell model for up to 240 h with the BSCFP0.05 oxygen electrode. These results highly promise non-metal-doped oxygen electrode materials in practical R-PCECs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2022.137787</doi></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-12, Vol.450, p.137787, Article 137787
issn 1385-8947
1873-3212
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2022_137787
source ScienceDirect Freedom Collection 2022-2024
subjects Oxygen electrode
Oxygen reduction reaction
Phosphorus doping
Protonic ceramic electrochemical cells
Water oxidation reaction
title Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20bifunctional%20phosphorus-doped%20perovskite%20oxygen%20electrode%20for%20reversible%20proton%20ceramic%20electrochemical%20cells&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Liu,%20Zuoqing&rft.date=2022-12-15&rft.volume=450&rft.spage=137787&rft.pages=137787-&rft.artnum=137787&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2022.137787&rft_dat=%3Celsevier_cross%3ES1385894722032740%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true