Loading…
Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells
[Display omitted] •P doping can reduce the use of transition metals and the cost of raw materials.•Electronic conductivity, ion transport capacity, and hydration ability are boosted.•Oxygen surface exchange and bulk diffusivity are enhanced by P doping.•BSCFP0.05 has excellent ORR and WOR activity c...
Saved in:
Published in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2022-12, Vol.450, p.137787, Article 137787 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903 |
container_end_page | |
container_issue | |
container_start_page | 137787 |
container_title | Chemical engineering journal (Lausanne, Switzerland : 1996) |
container_volume | 450 |
creator | Liu, Zuoqing Cheng, Dongfang Zhu, Yinlong Liang, Mingzhuang Yang, Meiting Yang, Guangming Ran, Ran Wang, Wei Zhou, Wei Shao, Zongping |
description | [Display omitted]
•P doping can reduce the use of transition metals and the cost of raw materials.•Electronic conductivity, ion transport capacity, and hydration ability are boosted.•Oxygen surface exchange and bulk diffusivity are enhanced by P doping.•BSCFP0.05 has excellent ORR and WOR activity compared with BSCF.•Increased oxygen vacancy formation and hydration reaction are confirmed by DFT calculation.
Driven by the demand for the sustainable regeneration of clean energy and high-efficiency low-cost energy conversion equipment, reversible proton ceramic electrochemical cells (R-PCECs), which are promising for realizing the mutual conversion between large-scale renewable electric energy and chemical energy, are receiving constant attention. Unfortunately, the sluggish activity of oxygen reduction reaction (ORR) and water oxidation reaction (WOR) for the oxygen electrode in the low and medium temperature ranges and the poor durability of reversible operation block the large-scale application of R-PCECs. Here, a novel oxygen electrode Ba0.5Sr0.5(Co0.8Fe0.2)0.95P0.05O3-δ (BSCFP0.05) with high electrochemical activity and stability is developed. By partially doping non-metallic phosphorus (P) element into the B-site transition metal of the classic oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), the electronic conductivity, ions (O2−/H+) transport capacity, and hydration ability are all significantly boosted. Especially, a single cell with the BSCFP0.05 electrode achieves an excellent peak power density of 842 mW cm−2 and an electrolysis current of −1000 mA cm−2 at 1.3 V at 600 °C. No significant attenuation appears during continuous conversion operation between the fuel cell model and the electrolysis cell model for up to 240 h with the BSCFP0.05 oxygen electrode. These results highly promise non-metal-doped oxygen electrode materials in practical R-PCECs. |
doi_str_mv | 10.1016/j.cej.2022.137787 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2022_137787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894722032740</els_id><sourcerecordid>S1385894722032740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903</originalsourceid><addsrcrecordid>eNp9kN1KxDAQhYMouK4-gHd5gdb8tE2CV7L4B4Igeh3SdOKmdpuSdBf37c2yeuvFMDMw53DmQ-iakpIS2tz0pYW-ZISxknIhpDhBCyoFLzij7DTPXNaFVJU4Rxcp9YSQRlG1QPNbaLdpxq1329HOPoxmwNM6pFxxm4ouTNDhCWLYpS8_Aw7f-08YMQxg5xg6wC5EHGEHMfl2ADzFMIcRW4hm4-3fnV1D3rK1hWFIl-jMmSHB1W9foo-H-_fVU_Hy-vi8unspLFNiLhhjVKkWnOSidsbwxklVg2mtdZXgsut419TSGS4aQaBpq4oApYZTx7hShC8RPfraGFKK4PQU_cbEvaZEH7DpXmds-oBNH7Flze1RAznYzkPUyXoYLXQ-5ld0F_w_6h9CP3kx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Zuoqing ; Cheng, Dongfang ; Zhu, Yinlong ; Liang, Mingzhuang ; Yang, Meiting ; Yang, Guangming ; Ran, Ran ; Wang, Wei ; Zhou, Wei ; Shao, Zongping</creator><creatorcontrib>Liu, Zuoqing ; Cheng, Dongfang ; Zhu, Yinlong ; Liang, Mingzhuang ; Yang, Meiting ; Yang, Guangming ; Ran, Ran ; Wang, Wei ; Zhou, Wei ; Shao, Zongping</creatorcontrib><description>[Display omitted]
•P doping can reduce the use of transition metals and the cost of raw materials.•Electronic conductivity, ion transport capacity, and hydration ability are boosted.•Oxygen surface exchange and bulk diffusivity are enhanced by P doping.•BSCFP0.05 has excellent ORR and WOR activity compared with BSCF.•Increased oxygen vacancy formation and hydration reaction are confirmed by DFT calculation.
Driven by the demand for the sustainable regeneration of clean energy and high-efficiency low-cost energy conversion equipment, reversible proton ceramic electrochemical cells (R-PCECs), which are promising for realizing the mutual conversion between large-scale renewable electric energy and chemical energy, are receiving constant attention. Unfortunately, the sluggish activity of oxygen reduction reaction (ORR) and water oxidation reaction (WOR) for the oxygen electrode in the low and medium temperature ranges and the poor durability of reversible operation block the large-scale application of R-PCECs. Here, a novel oxygen electrode Ba0.5Sr0.5(Co0.8Fe0.2)0.95P0.05O3-δ (BSCFP0.05) with high electrochemical activity and stability is developed. By partially doping non-metallic phosphorus (P) element into the B-site transition metal of the classic oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), the electronic conductivity, ions (O2−/H+) transport capacity, and hydration ability are all significantly boosted. Especially, a single cell with the BSCFP0.05 electrode achieves an excellent peak power density of 842 mW cm−2 and an electrolysis current of −1000 mA cm−2 at 1.3 V at 600 °C. No significant attenuation appears during continuous conversion operation between the fuel cell model and the electrolysis cell model for up to 240 h with the BSCFP0.05 oxygen electrode. These results highly promise non-metal-doped oxygen electrode materials in practical R-PCECs.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2022.137787</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Oxygen electrode ; Oxygen reduction reaction ; Phosphorus doping ; Protonic ceramic electrochemical cells ; Water oxidation reaction</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-12, Vol.450, p.137787, Article 137787</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903</citedby><cites>FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Zuoqing</creatorcontrib><creatorcontrib>Cheng, Dongfang</creatorcontrib><creatorcontrib>Zhu, Yinlong</creatorcontrib><creatorcontrib>Liang, Mingzhuang</creatorcontrib><creatorcontrib>Yang, Meiting</creatorcontrib><creatorcontrib>Yang, Guangming</creatorcontrib><creatorcontrib>Ran, Ran</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><title>Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>[Display omitted]
•P doping can reduce the use of transition metals and the cost of raw materials.•Electronic conductivity, ion transport capacity, and hydration ability are boosted.•Oxygen surface exchange and bulk diffusivity are enhanced by P doping.•BSCFP0.05 has excellent ORR and WOR activity compared with BSCF.•Increased oxygen vacancy formation and hydration reaction are confirmed by DFT calculation.
Driven by the demand for the sustainable regeneration of clean energy and high-efficiency low-cost energy conversion equipment, reversible proton ceramic electrochemical cells (R-PCECs), which are promising for realizing the mutual conversion between large-scale renewable electric energy and chemical energy, are receiving constant attention. Unfortunately, the sluggish activity of oxygen reduction reaction (ORR) and water oxidation reaction (WOR) for the oxygen electrode in the low and medium temperature ranges and the poor durability of reversible operation block the large-scale application of R-PCECs. Here, a novel oxygen electrode Ba0.5Sr0.5(Co0.8Fe0.2)0.95P0.05O3-δ (BSCFP0.05) with high electrochemical activity and stability is developed. By partially doping non-metallic phosphorus (P) element into the B-site transition metal of the classic oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), the electronic conductivity, ions (O2−/H+) transport capacity, and hydration ability are all significantly boosted. Especially, a single cell with the BSCFP0.05 electrode achieves an excellent peak power density of 842 mW cm−2 and an electrolysis current of −1000 mA cm−2 at 1.3 V at 600 °C. No significant attenuation appears during continuous conversion operation between the fuel cell model and the electrolysis cell model for up to 240 h with the BSCFP0.05 oxygen electrode. These results highly promise non-metal-doped oxygen electrode materials in practical R-PCECs.</description><subject>Oxygen electrode</subject><subject>Oxygen reduction reaction</subject><subject>Phosphorus doping</subject><subject>Protonic ceramic electrochemical cells</subject><subject>Water oxidation reaction</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KxDAQhYMouK4-gHd5gdb8tE2CV7L4B4Igeh3SdOKmdpuSdBf37c2yeuvFMDMw53DmQ-iakpIS2tz0pYW-ZISxknIhpDhBCyoFLzij7DTPXNaFVJU4Rxcp9YSQRlG1QPNbaLdpxq1329HOPoxmwNM6pFxxm4ouTNDhCWLYpS8_Aw7f-08YMQxg5xg6wC5EHGEHMfl2ADzFMIcRW4hm4-3fnV1D3rK1hWFIl-jMmSHB1W9foo-H-_fVU_Hy-vi8unspLFNiLhhjVKkWnOSidsbwxklVg2mtdZXgsut419TSGS4aQaBpq4oApYZTx7hShC8RPfraGFKK4PQU_cbEvaZEH7DpXmds-oBNH7Flze1RAznYzkPUyXoYLXQ-5ld0F_w_6h9CP3kx</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Liu, Zuoqing</creator><creator>Cheng, Dongfang</creator><creator>Zhu, Yinlong</creator><creator>Liang, Mingzhuang</creator><creator>Yang, Meiting</creator><creator>Yang, Guangming</creator><creator>Ran, Ran</creator><creator>Wang, Wei</creator><creator>Zhou, Wei</creator><creator>Shao, Zongping</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221215</creationdate><title>Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells</title><author>Liu, Zuoqing ; Cheng, Dongfang ; Zhu, Yinlong ; Liang, Mingzhuang ; Yang, Meiting ; Yang, Guangming ; Ran, Ran ; Wang, Wei ; Zhou, Wei ; Shao, Zongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Oxygen electrode</topic><topic>Oxygen reduction reaction</topic><topic>Phosphorus doping</topic><topic>Protonic ceramic electrochemical cells</topic><topic>Water oxidation reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zuoqing</creatorcontrib><creatorcontrib>Cheng, Dongfang</creatorcontrib><creatorcontrib>Zhu, Yinlong</creatorcontrib><creatorcontrib>Liang, Mingzhuang</creatorcontrib><creatorcontrib>Yang, Meiting</creatorcontrib><creatorcontrib>Yang, Guangming</creatorcontrib><creatorcontrib>Ran, Ran</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zuoqing</au><au>Cheng, Dongfang</au><au>Zhu, Yinlong</au><au>Liang, Mingzhuang</au><au>Yang, Meiting</au><au>Yang, Guangming</au><au>Ran, Ran</au><au>Wang, Wei</au><au>Zhou, Wei</au><au>Shao, Zongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2022-12-15</date><risdate>2022</risdate><volume>450</volume><spage>137787</spage><pages>137787-</pages><artnum>137787</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>[Display omitted]
•P doping can reduce the use of transition metals and the cost of raw materials.•Electronic conductivity, ion transport capacity, and hydration ability are boosted.•Oxygen surface exchange and bulk diffusivity are enhanced by P doping.•BSCFP0.05 has excellent ORR and WOR activity compared with BSCF.•Increased oxygen vacancy formation and hydration reaction are confirmed by DFT calculation.
Driven by the demand for the sustainable regeneration of clean energy and high-efficiency low-cost energy conversion equipment, reversible proton ceramic electrochemical cells (R-PCECs), which are promising for realizing the mutual conversion between large-scale renewable electric energy and chemical energy, are receiving constant attention. Unfortunately, the sluggish activity of oxygen reduction reaction (ORR) and water oxidation reaction (WOR) for the oxygen electrode in the low and medium temperature ranges and the poor durability of reversible operation block the large-scale application of R-PCECs. Here, a novel oxygen electrode Ba0.5Sr0.5(Co0.8Fe0.2)0.95P0.05O3-δ (BSCFP0.05) with high electrochemical activity and stability is developed. By partially doping non-metallic phosphorus (P) element into the B-site transition metal of the classic oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), the electronic conductivity, ions (O2−/H+) transport capacity, and hydration ability are all significantly boosted. Especially, a single cell with the BSCFP0.05 electrode achieves an excellent peak power density of 842 mW cm−2 and an electrolysis current of −1000 mA cm−2 at 1.3 V at 600 °C. No significant attenuation appears during continuous conversion operation between the fuel cell model and the electrolysis cell model for up to 240 h with the BSCFP0.05 oxygen electrode. These results highly promise non-metal-doped oxygen electrode materials in practical R-PCECs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2022.137787</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-8947 |
ispartof | Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-12, Vol.450, p.137787, Article 137787 |
issn | 1385-8947 1873-3212 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cej_2022_137787 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Oxygen electrode Oxygen reduction reaction Phosphorus doping Protonic ceramic electrochemical cells Water oxidation reaction |
title | Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20bifunctional%20phosphorus-doped%20perovskite%20oxygen%20electrode%20for%20reversible%20proton%20ceramic%20electrochemical%20cells&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Liu,%20Zuoqing&rft.date=2022-12-15&rft.volume=450&rft.spage=137787&rft.pages=137787-&rft.artnum=137787&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2022.137787&rft_dat=%3Celsevier_cross%3ES1385894722032740%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-222199bef8375faa36f895eabccf4738dd3d658fa37670e6b440e11a31f239903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |