Loading…

Achieving high pulse charge–discharge energy storage properties and temperature stability of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 lead-free ceramics via bandgap and defect engineering

•A novel dual priority strategy is proposed to improve pulse energy storage properties of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 ceramics.•High current density of 2786.4 A/cm2 and power density of 321.6 MW/cm3 are achieved at x = 0.04.•High discharge energy density of 3.98 J/cm3 and ultrafast discharge...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2022-12, Vol.450, p.137814, Article 137814
Main Authors: Yan, Guiwei, Xu, Liqin, Fang, Bijun, Zhang, Shuai, Lu, Xiaolong, Zhao, Xiangyong, Ding, Jianning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c227t-ee0deb0fa5cc2c1263ecc8c3c4572d3ec34ba55aefbc630f052f31e02dc4d7a53
cites cdi_FETCH-LOGICAL-c227t-ee0deb0fa5cc2c1263ecc8c3c4572d3ec34ba55aefbc630f052f31e02dc4d7a53
container_end_page
container_issue
container_start_page 137814
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 450
creator Yan, Guiwei
Xu, Liqin
Fang, Bijun
Zhang, Shuai
Lu, Xiaolong
Zhao, Xiangyong
Ding, Jianning
description •A novel dual priority strategy is proposed to improve pulse energy storage properties of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 ceramics.•High current density of 2786.4 A/cm2 and power density of 321.6 MW/cm3 are achieved at x = 0.04.•High discharge energy density of 3.98 J/cm3 and ultrafast discharge rate of 221 ns are obtained at x = 0.04.•The ceramics present excellent stabilities in pulse energy storage performance.•t0.9 is influenced by Cullen effect, bandgap width, pinning effect and domain size. A novel dual priority strategy of strengthening charge compensation in A-site of perovskite structure and widening bandgap width was designed to prepare (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 (BLLMTx) ceramics, which can solve the conflict between polarization and breakdown strength, and improve the pulse energy storage performance of the BaTiO3-based system. As a result, ultrahigh discharge energy density of 3.98 J/cm3 and giant pulse power density of 321.6 MW/cm3 with current density of 2786.4 A/cm2 are obtained at 360 kV/cm for the (Ba0.94Li0.02La0.04)(Mg0.04Ti0.96)O3 (BLLMT0.04) ceramics with considerable fast discharge rate and outstanding temperature stability as well as cycle life, correlating with multi-ferroelectric phases coexistence, increasing bandgap width, strengthening charge compensation and establishing small size of the polar nano-regions (PNRs), which exceeds the great mass of reported lead-free ceramics. The comprehensive properties indicate that the BLLMT0.04 ceramics present potential application in pulse energy storage system. The concept of composition design via increasing bandgap width and strengthening charge compensation provides a new idea for developing lead-free dielectric ceramic capacitors.
doi_str_mv 10.1016/j.cej.2022.137814
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2022_137814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894722033010</els_id><sourcerecordid>S1385894722033010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-ee0deb0fa5cc2c1263ecc8c3c4572d3ec34ba55aefbc630f052f31e02dc4d7a53</originalsourceid><addsrcrecordid>eNp9UEtO7DAQjBBIfA_AzktYJPiTr1gBenykQWxgbTntdsajmSSyw4jZvTtwGc7DSWgY1qy6yuqqLleSnAqeCS7Ki0UGuMgklzITqqpFvpMciLpSqZJC7hJWdZHWTV7tJ4cxLjjnZSOag-TjCuYe177v2Nx3cza-LiMymJvQ4ef_d-vjFjPsMXQbFqchGKJjGEYMk8fITG_ZhCuiZnoNSCum9Us_bdjg2Nm14VlTp28zzzMuZ-bt_OyxI5g_00NTnj8ptkRjUxeQ7pLHykNka29YS8adGX_8LTqEiUJ0vkcMFPc42XOGsp78zqPk5fbf8819Onu6e7i5mqUgZTWliNxiy50pACQIWSoEqEFBXlTSElF5a4rCoGuhVNzxQjolkEsLua1MoY4SsfWFMMQY0Okx-JUJGy24_q5eLzRVr7-r19vqSXO51SAFW3sMOoLHHtD6QN_QdvB_qL8AYYqPRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Achieving high pulse charge–discharge energy storage properties and temperature stability of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 lead-free ceramics via bandgap and defect engineering</title><source>ScienceDirect Freedom Collection</source><creator>Yan, Guiwei ; Xu, Liqin ; Fang, Bijun ; Zhang, Shuai ; Lu, Xiaolong ; Zhao, Xiangyong ; Ding, Jianning</creator><creatorcontrib>Yan, Guiwei ; Xu, Liqin ; Fang, Bijun ; Zhang, Shuai ; Lu, Xiaolong ; Zhao, Xiangyong ; Ding, Jianning</creatorcontrib><description>•A novel dual priority strategy is proposed to improve pulse energy storage properties of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 ceramics.•High current density of 2786.4 A/cm2 and power density of 321.6 MW/cm3 are achieved at x = 0.04.•High discharge energy density of 3.98 J/cm3 and ultrafast discharge rate of 221 ns are obtained at x = 0.04.•The ceramics present excellent stabilities in pulse energy storage performance.•t0.9 is influenced by Cullen effect, bandgap width, pinning effect and domain size. A novel dual priority strategy of strengthening charge compensation in A-site of perovskite structure and widening bandgap width was designed to prepare (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 (BLLMTx) ceramics, which can solve the conflict between polarization and breakdown strength, and improve the pulse energy storage performance of the BaTiO3-based system. As a result, ultrahigh discharge energy density of 3.98 J/cm3 and giant pulse power density of 321.6 MW/cm3 with current density of 2786.4 A/cm2 are obtained at 360 kV/cm for the (Ba0.94Li0.02La0.04)(Mg0.04Ti0.96)O3 (BLLMT0.04) ceramics with considerable fast discharge rate and outstanding temperature stability as well as cycle life, correlating with multi-ferroelectric phases coexistence, increasing bandgap width, strengthening charge compensation and establishing small size of the polar nano-regions (PNRs), which exceeds the great mass of reported lead-free ceramics. The comprehensive properties indicate that the BLLMT0.04 ceramics present potential application in pulse energy storage system. The concept of composition design via increasing bandgap width and strengthening charge compensation provides a new idea for developing lead-free dielectric ceramic capacitors.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2022.137814</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bandgap width ; BaTiO3-based ; Charge–discharge properties ; Donor doping ; Pulse energy storage</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-12, Vol.450, p.137814, Article 137814</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-ee0deb0fa5cc2c1263ecc8c3c4572d3ec34ba55aefbc630f052f31e02dc4d7a53</citedby><cites>FETCH-LOGICAL-c227t-ee0deb0fa5cc2c1263ecc8c3c4572d3ec34ba55aefbc630f052f31e02dc4d7a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yan, Guiwei</creatorcontrib><creatorcontrib>Xu, Liqin</creatorcontrib><creatorcontrib>Fang, Bijun</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Lu, Xiaolong</creatorcontrib><creatorcontrib>Zhao, Xiangyong</creatorcontrib><creatorcontrib>Ding, Jianning</creatorcontrib><title>Achieving high pulse charge–discharge energy storage properties and temperature stability of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 lead-free ceramics via bandgap and defect engineering</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>•A novel dual priority strategy is proposed to improve pulse energy storage properties of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 ceramics.•High current density of 2786.4 A/cm2 and power density of 321.6 MW/cm3 are achieved at x = 0.04.•High discharge energy density of 3.98 J/cm3 and ultrafast discharge rate of 221 ns are obtained at x = 0.04.•The ceramics present excellent stabilities in pulse energy storage performance.•t0.9 is influenced by Cullen effect, bandgap width, pinning effect and domain size. A novel dual priority strategy of strengthening charge compensation in A-site of perovskite structure and widening bandgap width was designed to prepare (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 (BLLMTx) ceramics, which can solve the conflict between polarization and breakdown strength, and improve the pulse energy storage performance of the BaTiO3-based system. As a result, ultrahigh discharge energy density of 3.98 J/cm3 and giant pulse power density of 321.6 MW/cm3 with current density of 2786.4 A/cm2 are obtained at 360 kV/cm for the (Ba0.94Li0.02La0.04)(Mg0.04Ti0.96)O3 (BLLMT0.04) ceramics with considerable fast discharge rate and outstanding temperature stability as well as cycle life, correlating with multi-ferroelectric phases coexistence, increasing bandgap width, strengthening charge compensation and establishing small size of the polar nano-regions (PNRs), which exceeds the great mass of reported lead-free ceramics. The comprehensive properties indicate that the BLLMT0.04 ceramics present potential application in pulse energy storage system. The concept of composition design via increasing bandgap width and strengthening charge compensation provides a new idea for developing lead-free dielectric ceramic capacitors.</description><subject>Bandgap width</subject><subject>BaTiO3-based</subject><subject>Charge–discharge properties</subject><subject>Donor doping</subject><subject>Pulse energy storage</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UEtO7DAQjBBIfA_AzktYJPiTr1gBenykQWxgbTntdsajmSSyw4jZvTtwGc7DSWgY1qy6yuqqLleSnAqeCS7Ki0UGuMgklzITqqpFvpMciLpSqZJC7hJWdZHWTV7tJ4cxLjjnZSOag-TjCuYe177v2Nx3cza-LiMymJvQ4ef_d-vjFjPsMXQbFqchGKJjGEYMk8fITG_ZhCuiZnoNSCum9Us_bdjg2Nm14VlTp28zzzMuZ-bt_OyxI5g_00NTnj8ptkRjUxeQ7pLHykNka29YS8adGX_8LTqEiUJ0vkcMFPc42XOGsp78zqPk5fbf8819Onu6e7i5mqUgZTWliNxiy50pACQIWSoEqEFBXlTSElF5a4rCoGuhVNzxQjolkEsLua1MoY4SsfWFMMQY0Okx-JUJGy24_q5eLzRVr7-r19vqSXO51SAFW3sMOoLHHtD6QN_QdvB_qL8AYYqPRw</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Yan, Guiwei</creator><creator>Xu, Liqin</creator><creator>Fang, Bijun</creator><creator>Zhang, Shuai</creator><creator>Lu, Xiaolong</creator><creator>Zhao, Xiangyong</creator><creator>Ding, Jianning</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221215</creationdate><title>Achieving high pulse charge–discharge energy storage properties and temperature stability of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 lead-free ceramics via bandgap and defect engineering</title><author>Yan, Guiwei ; Xu, Liqin ; Fang, Bijun ; Zhang, Shuai ; Lu, Xiaolong ; Zhao, Xiangyong ; Ding, Jianning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-ee0deb0fa5cc2c1263ecc8c3c4572d3ec34ba55aefbc630f052f31e02dc4d7a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bandgap width</topic><topic>BaTiO3-based</topic><topic>Charge–discharge properties</topic><topic>Donor doping</topic><topic>Pulse energy storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Guiwei</creatorcontrib><creatorcontrib>Xu, Liqin</creatorcontrib><creatorcontrib>Fang, Bijun</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Lu, Xiaolong</creatorcontrib><creatorcontrib>Zhao, Xiangyong</creatorcontrib><creatorcontrib>Ding, Jianning</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Guiwei</au><au>Xu, Liqin</au><au>Fang, Bijun</au><au>Zhang, Shuai</au><au>Lu, Xiaolong</au><au>Zhao, Xiangyong</au><au>Ding, Jianning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving high pulse charge–discharge energy storage properties and temperature stability of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 lead-free ceramics via bandgap and defect engineering</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2022-12-15</date><risdate>2022</risdate><volume>450</volume><spage>137814</spage><pages>137814-</pages><artnum>137814</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>•A novel dual priority strategy is proposed to improve pulse energy storage properties of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 ceramics.•High current density of 2786.4 A/cm2 and power density of 321.6 MW/cm3 are achieved at x = 0.04.•High discharge energy density of 3.98 J/cm3 and ultrafast discharge rate of 221 ns are obtained at x = 0.04.•The ceramics present excellent stabilities in pulse energy storage performance.•t0.9 is influenced by Cullen effect, bandgap width, pinning effect and domain size. A novel dual priority strategy of strengthening charge compensation in A-site of perovskite structure and widening bandgap width was designed to prepare (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 (BLLMTx) ceramics, which can solve the conflict between polarization and breakdown strength, and improve the pulse energy storage performance of the BaTiO3-based system. As a result, ultrahigh discharge energy density of 3.98 J/cm3 and giant pulse power density of 321.6 MW/cm3 with current density of 2786.4 A/cm2 are obtained at 360 kV/cm for the (Ba0.94Li0.02La0.04)(Mg0.04Ti0.96)O3 (BLLMT0.04) ceramics with considerable fast discharge rate and outstanding temperature stability as well as cycle life, correlating with multi-ferroelectric phases coexistence, increasing bandgap width, strengthening charge compensation and establishing small size of the polar nano-regions (PNRs), which exceeds the great mass of reported lead-free ceramics. The comprehensive properties indicate that the BLLMT0.04 ceramics present potential application in pulse energy storage system. The concept of composition design via increasing bandgap width and strengthening charge compensation provides a new idea for developing lead-free dielectric ceramic capacitors.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2022.137814</doi></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2022-12, Vol.450, p.137814, Article 137814
issn 1385-8947
1873-3212
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2022_137814
source ScienceDirect Freedom Collection
subjects Bandgap width
BaTiO3-based
Charge–discharge properties
Donor doping
Pulse energy storage
title Achieving high pulse charge–discharge energy storage properties and temperature stability of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 lead-free ceramics via bandgap and defect engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20high%20pulse%20charge%E2%80%93discharge%20energy%20storage%20properties%20and%20temperature%20stability%20of%20(Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3%20lead-free%20ceramics%20via%20bandgap%20and%20defect%20engineering&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Yan,%20Guiwei&rft.date=2022-12-15&rft.volume=450&rft.spage=137814&rft.pages=137814-&rft.artnum=137814&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2022.137814&rft_dat=%3Celsevier_cross%3ES1385894722033010%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-ee0deb0fa5cc2c1263ecc8c3c4572d3ec34ba55aefbc630f052f31e02dc4d7a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true