Loading…

2, 3, 4, 5, 6-Pentafluorophenylammonium bromide-based double-sided interface engineering for efficient planar heterojunction perovskite solar cells

[Display omitted] •The 5PFP-Br is used as a double-interface passivator for PSCs.•The ETL with 5PFP-Br passivation has higher conductivity and electron mobility.•The perovskite with 5PFP-Br passivation has lower interfacial carrier defect state.•The PCE of the treated device increased from 18.09% to...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2023-01, Vol.452, p.139308, Article 139308
Main Authors: Zong, Beibei, Hu, Die, Sun, Qing, Deng, Jianguo, Zhang, Zizhao, Meng, Xiangxin, Shen, Bo, Kang, Bonan, Silva, S. Ravi P., Lu, Geyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •The 5PFP-Br is used as a double-interface passivator for PSCs.•The ETL with 5PFP-Br passivation has higher conductivity and electron mobility.•The perovskite with 5PFP-Br passivation has lower interfacial carrier defect state.•The PCE of the treated device increased from 18.09% to 21.15%.•The device based 5PFP-Br double-interface passivator have good stability. In order to obtain high power conversion efficiency and high stability perovskite solar cells, many innovative optimization schemes have been proposed. Thereinto, the interface modification become an effective way to improve the performance of device. Here, A dual-interface passivation by 2, 3, 4, 5, 6-pentafluorophenylammonium bromide-based (5PFP-Br) is used to optimize the performance of device with the structure of ITO/SnO2/perovskite/PTAA/Ag. We design the 5PFP-Br layer at SnO2/perovskite and perovskite/PTAA interface respectively. The results show that the interface contact between perovskite and charge transport layer is improved obviously. At the same time, the density of carrier transport defect states in the device is reduced, thus reducing the non-radiative recombination of carriers. Meanwhile, the 5PFP-Br layer at perovskite/PTAA interface can effectively passivate Pb defects and reduce the number of grain boundaries in perovskite film, and increase the carrier transfer and collection efficiency. Finally, 5PFP-Br double-interface passivation can further optimize and improve the performance of device. The device based 5PFP-Br double-interface passivation presents an increased efficiency from 18.09% to 21.15%, where FF is raised from 73.30% to 80.04%. At the same time, unpackaged device can still be maintained to more than 90% efficiency after about 1200 h at 25 °C and 25%RH.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2022.139308