Loading…

Dysfunction of DNA repair for boosted tumor cell cycle arrest based on NIR-II biodegradable Te-prussian blue nanorod

•We prepared Te@PB@PDA-HA/HHT NRs with a highly biodegradation efficiency.•Te@PB@PDA-HA/HHT NRs exhibited good NIR-II photothermal activity.•Dysfunction of DNA repair boosted cell cycle arrest in tumor. Reactive oxygen species (ROS)-mediated cell cycle arrest mechanism shows distinguished potential...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2023-01, Vol.455, p.140870, Article 140870
Main Authors: Liang, Xiaoyang, Liu, Ping, Li, Wen, Binh Vong, Long, Wang, Tingting, Geng, Lujing, Zhou, Yue, Wang, Siyu, Lu, Qiang, Tan, Fengping, Wang, Xinxing, Li, Nan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c249t-61c3fc6a58398d7c1ab75245610721c91a1cae78c36f5dee34ef1071b1048dea3
container_end_page
container_issue
container_start_page 140870
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 455
creator Liang, Xiaoyang
Liu, Ping
Li, Wen
Binh Vong, Long
Wang, Tingting
Geng, Lujing
Zhou, Yue
Wang, Siyu
Lu, Qiang
Tan, Fengping
Wang, Xinxing
Li, Nan
description •We prepared Te@PB@PDA-HA/HHT NRs with a highly biodegradation efficiency.•Te@PB@PDA-HA/HHT NRs exhibited good NIR-II photothermal activity.•Dysfunction of DNA repair boosted cell cycle arrest in tumor. Reactive oxygen species (ROS)-mediated cell cycle arrest mechanism shows distinguished potential for the inhibiting of cancer cells. However, poly ADP-ribose polymerase (PARP), an enzyme which can contribute to the repair of single-strand DNA nicks, largely limited the efficiency in cell cycle arrest. Here, polydopamine (PDA)/hyaluronic acid (HA) decorated and protein translation inhibitor homoharringtonine (HHT) loaded tellurium (Te)-prussian blue (PB) nanorods (Te@PB@PDA-HA/HHT NRs) were synthesized for boosted G2 cell cycle arrest to realize tumor ablation. Under NIR-II irradiation, Te and Fe elements can collectively generate ROS and deplete GSH due to the fenton-like reaction and metal-reducing reaction under tumor microenvironment (TME), thus disturbing the DNA structure to induce cell cycle arrest. More importantly, HHT suppresses PARP production to induce DNA repair dysfunction, thereby boosting DNA oxidative damage. Remarkably, this nanoplatform degrades into ionic form under acid condition, illustrating inherently TME-responsive biodegradability. The anti-tumor evaluation illustrated that Te@PB@PDA-HA/HHT NRs could notably destroy tumor cells in both cellular experiments and mouse models. This study made a successful attempt in boosted cell cycle arrest and encouraged more biological explorations on biodegradation nanomaterials, especially in combating cancers.
doi_str_mv 10.1016/j.cej.2022.140870
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2022_140870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894722063501</els_id><sourcerecordid>S1385894722063501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-61c3fc6a58398d7c1ab75245610721c91a1cae78c36f5dee34ef1071b1048dea3</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRU1poWnaD-hOP2BXI_lJVyHpwxBSKOlayNKoyDhWkOxC_r4K6bqrmeHOGYaTJI9AM6BQPvWZwj5jlLEMclpX9CpZQF3xlDNg17HndZHWTV7dJnch9JTSsoFmkUybUzDzqCbrRuIM2exWxONRWk-M86RzLkyoyTQf4qRwGIg6qQGJ9B7DRDoZYhrRXfuZti3prNP47aWWXVzaY3r0cwhWjqQbZiSjHJ13-j65MXII-PBXl8nX68t-_Z5uP97a9WqbKpY3U1qC4kaVsqh5U-tKgeyqguVFCbRioBqQoCRWteKlKTQiz9HECDqgea1R8mUCl7vKuxA8GnH09iD9SQAVZ22iF1GbOGsTF22Reb4wGB_7sehFUBZHhdp6VJPQzv5D_wKzCHYF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dysfunction of DNA repair for boosted tumor cell cycle arrest based on NIR-II biodegradable Te-prussian blue nanorod</title><source>ScienceDirect Freedom Collection</source><creator>Liang, Xiaoyang ; Liu, Ping ; Li, Wen ; Binh Vong, Long ; Wang, Tingting ; Geng, Lujing ; Zhou, Yue ; Wang, Siyu ; Lu, Qiang ; Tan, Fengping ; Wang, Xinxing ; Li, Nan</creator><creatorcontrib>Liang, Xiaoyang ; Liu, Ping ; Li, Wen ; Binh Vong, Long ; Wang, Tingting ; Geng, Lujing ; Zhou, Yue ; Wang, Siyu ; Lu, Qiang ; Tan, Fengping ; Wang, Xinxing ; Li, Nan</creatorcontrib><description>•We prepared Te@PB@PDA-HA/HHT NRs with a highly biodegradation efficiency.•Te@PB@PDA-HA/HHT NRs exhibited good NIR-II photothermal activity.•Dysfunction of DNA repair boosted cell cycle arrest in tumor. Reactive oxygen species (ROS)-mediated cell cycle arrest mechanism shows distinguished potential for the inhibiting of cancer cells. However, poly ADP-ribose polymerase (PARP), an enzyme which can contribute to the repair of single-strand DNA nicks, largely limited the efficiency in cell cycle arrest. Here, polydopamine (PDA)/hyaluronic acid (HA) decorated and protein translation inhibitor homoharringtonine (HHT) loaded tellurium (Te)-prussian blue (PB) nanorods (Te@PB@PDA-HA/HHT NRs) were synthesized for boosted G2 cell cycle arrest to realize tumor ablation. Under NIR-II irradiation, Te and Fe elements can collectively generate ROS and deplete GSH due to the fenton-like reaction and metal-reducing reaction under tumor microenvironment (TME), thus disturbing the DNA structure to induce cell cycle arrest. More importantly, HHT suppresses PARP production to induce DNA repair dysfunction, thereby boosting DNA oxidative damage. Remarkably, this nanoplatform degrades into ionic form under acid condition, illustrating inherently TME-responsive biodegradability. The anti-tumor evaluation illustrated that Te@PB@PDA-HA/HHT NRs could notably destroy tumor cells in both cellular experiments and mouse models. This study made a successful attempt in boosted cell cycle arrest and encouraged more biological explorations on biodegradation nanomaterials, especially in combating cancers.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2022.140870</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biodegradation ; Cell cycle arrest ; DNA repair dysfunction ; Homoharringtonine ; Oxidative stress ; Tellurium</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2023-01, Vol.455, p.140870, Article 140870</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-61c3fc6a58398d7c1ab75245610721c91a1cae78c36f5dee34ef1071b1048dea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liang, Xiaoyang</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Binh Vong, Long</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Geng, Lujing</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Wang, Siyu</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><creatorcontrib>Tan, Fengping</creatorcontrib><creatorcontrib>Wang, Xinxing</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><title>Dysfunction of DNA repair for boosted tumor cell cycle arrest based on NIR-II biodegradable Te-prussian blue nanorod</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>•We prepared Te@PB@PDA-HA/HHT NRs with a highly biodegradation efficiency.•Te@PB@PDA-HA/HHT NRs exhibited good NIR-II photothermal activity.•Dysfunction of DNA repair boosted cell cycle arrest in tumor. Reactive oxygen species (ROS)-mediated cell cycle arrest mechanism shows distinguished potential for the inhibiting of cancer cells. However, poly ADP-ribose polymerase (PARP), an enzyme which can contribute to the repair of single-strand DNA nicks, largely limited the efficiency in cell cycle arrest. Here, polydopamine (PDA)/hyaluronic acid (HA) decorated and protein translation inhibitor homoharringtonine (HHT) loaded tellurium (Te)-prussian blue (PB) nanorods (Te@PB@PDA-HA/HHT NRs) were synthesized for boosted G2 cell cycle arrest to realize tumor ablation. Under NIR-II irradiation, Te and Fe elements can collectively generate ROS and deplete GSH due to the fenton-like reaction and metal-reducing reaction under tumor microenvironment (TME), thus disturbing the DNA structure to induce cell cycle arrest. More importantly, HHT suppresses PARP production to induce DNA repair dysfunction, thereby boosting DNA oxidative damage. Remarkably, this nanoplatform degrades into ionic form under acid condition, illustrating inherently TME-responsive biodegradability. The anti-tumor evaluation illustrated that Te@PB@PDA-HA/HHT NRs could notably destroy tumor cells in both cellular experiments and mouse models. This study made a successful attempt in boosted cell cycle arrest and encouraged more biological explorations on biodegradation nanomaterials, especially in combating cancers.</description><subject>Biodegradation</subject><subject>Cell cycle arrest</subject><subject>DNA repair dysfunction</subject><subject>Homoharringtonine</subject><subject>Oxidative stress</subject><subject>Tellurium</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRU1poWnaD-hOP2BXI_lJVyHpwxBSKOlayNKoyDhWkOxC_r4K6bqrmeHOGYaTJI9AM6BQPvWZwj5jlLEMclpX9CpZQF3xlDNg17HndZHWTV7dJnch9JTSsoFmkUybUzDzqCbrRuIM2exWxONRWk-M86RzLkyoyTQf4qRwGIg6qQGJ9B7DRDoZYhrRXfuZti3prNP47aWWXVzaY3r0cwhWjqQbZiSjHJ13-j65MXII-PBXl8nX68t-_Z5uP97a9WqbKpY3U1qC4kaVsqh5U-tKgeyqguVFCbRioBqQoCRWteKlKTQiz9HECDqgea1R8mUCl7vKuxA8GnH09iD9SQAVZ22iF1GbOGsTF22Reb4wGB_7sehFUBZHhdp6VJPQzv5D_wKzCHYF</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liang, Xiaoyang</creator><creator>Liu, Ping</creator><creator>Li, Wen</creator><creator>Binh Vong, Long</creator><creator>Wang, Tingting</creator><creator>Geng, Lujing</creator><creator>Zhou, Yue</creator><creator>Wang, Siyu</creator><creator>Lu, Qiang</creator><creator>Tan, Fengping</creator><creator>Wang, Xinxing</creator><creator>Li, Nan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230101</creationdate><title>Dysfunction of DNA repair for boosted tumor cell cycle arrest based on NIR-II biodegradable Te-prussian blue nanorod</title><author>Liang, Xiaoyang ; Liu, Ping ; Li, Wen ; Binh Vong, Long ; Wang, Tingting ; Geng, Lujing ; Zhou, Yue ; Wang, Siyu ; Lu, Qiang ; Tan, Fengping ; Wang, Xinxing ; Li, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-61c3fc6a58398d7c1ab75245610721c91a1cae78c36f5dee34ef1071b1048dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biodegradation</topic><topic>Cell cycle arrest</topic><topic>DNA repair dysfunction</topic><topic>Homoharringtonine</topic><topic>Oxidative stress</topic><topic>Tellurium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiaoyang</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Binh Vong, Long</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Geng, Lujing</creatorcontrib><creatorcontrib>Zhou, Yue</creatorcontrib><creatorcontrib>Wang, Siyu</creatorcontrib><creatorcontrib>Lu, Qiang</creatorcontrib><creatorcontrib>Tan, Fengping</creatorcontrib><creatorcontrib>Wang, Xinxing</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiaoyang</au><au>Liu, Ping</au><au>Li, Wen</au><au>Binh Vong, Long</au><au>Wang, Tingting</au><au>Geng, Lujing</au><au>Zhou, Yue</au><au>Wang, Siyu</au><au>Lu, Qiang</au><au>Tan, Fengping</au><au>Wang, Xinxing</au><au>Li, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dysfunction of DNA repair for boosted tumor cell cycle arrest based on NIR-II biodegradable Te-prussian blue nanorod</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>455</volume><spage>140870</spage><pages>140870-</pages><artnum>140870</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>•We prepared Te@PB@PDA-HA/HHT NRs with a highly biodegradation efficiency.•Te@PB@PDA-HA/HHT NRs exhibited good NIR-II photothermal activity.•Dysfunction of DNA repair boosted cell cycle arrest in tumor. Reactive oxygen species (ROS)-mediated cell cycle arrest mechanism shows distinguished potential for the inhibiting of cancer cells. However, poly ADP-ribose polymerase (PARP), an enzyme which can contribute to the repair of single-strand DNA nicks, largely limited the efficiency in cell cycle arrest. Here, polydopamine (PDA)/hyaluronic acid (HA) decorated and protein translation inhibitor homoharringtonine (HHT) loaded tellurium (Te)-prussian blue (PB) nanorods (Te@PB@PDA-HA/HHT NRs) were synthesized for boosted G2 cell cycle arrest to realize tumor ablation. Under NIR-II irradiation, Te and Fe elements can collectively generate ROS and deplete GSH due to the fenton-like reaction and metal-reducing reaction under tumor microenvironment (TME), thus disturbing the DNA structure to induce cell cycle arrest. More importantly, HHT suppresses PARP production to induce DNA repair dysfunction, thereby boosting DNA oxidative damage. Remarkably, this nanoplatform degrades into ionic form under acid condition, illustrating inherently TME-responsive biodegradability. The anti-tumor evaluation illustrated that Te@PB@PDA-HA/HHT NRs could notably destroy tumor cells in both cellular experiments and mouse models. This study made a successful attempt in boosted cell cycle arrest and encouraged more biological explorations on biodegradation nanomaterials, especially in combating cancers.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2022.140870</doi></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2023-01, Vol.455, p.140870, Article 140870
issn 1385-8947
1873-3212
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2022_140870
source ScienceDirect Freedom Collection
subjects Biodegradation
Cell cycle arrest
DNA repair dysfunction
Homoharringtonine
Oxidative stress
Tellurium
title Dysfunction of DNA repair for boosted tumor cell cycle arrest based on NIR-II biodegradable Te-prussian blue nanorod
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dysfunction%20of%20DNA%20repair%20for%20boosted%20tumor%20cell%20cycle%20arrest%20based%20on%20NIR-II%20biodegradable%20Te-prussian%20blue%20nanorod&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Liang,%20Xiaoyang&rft.date=2023-01-01&rft.volume=455&rft.spage=140870&rft.pages=140870-&rft.artnum=140870&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2022.140870&rft_dat=%3Celsevier_cross%3ES1385894722063501%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-61c3fc6a58398d7c1ab75245610721c91a1cae78c36f5dee34ef1071b1048dea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true