Loading…

Fluorinated carbonate-based electrolyte engineering solvation structure for high-voltage Li||LiNiO2 cell

[Display omitted] A novel all-fluorinated electrolyte that imparts high voltage and fast charging to Li||LiNiO2 cells has been developed. Meanwhile, a new solvent-chemically to derive a cathode-electrolyte interphase model is proposed to explain this excellent performance. To guide the design of nov...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2023-09, Vol.472, p.144890, Article 144890
Main Authors: Zheng, Wei-Chen, Lin, Jin-Xia, Chen, Hui, Liu, Shi-Shi, Shi, Chen-Guang, Huang, Ling, Sun, Shi-Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-f486d1d6563515a3536ea42a2fd55f5364b38c06b8847fe5eeb3a2b3ed94bcf83
cites cdi_FETCH-LOGICAL-c297t-f486d1d6563515a3536ea42a2fd55f5364b38c06b8847fe5eeb3a2b3ed94bcf83
container_end_page
container_issue
container_start_page 144890
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 472
creator Zheng, Wei-Chen
Lin, Jin-Xia
Chen, Hui
Liu, Shi-Shi
Shi, Chen-Guang
Huang, Ling
Sun, Shi-Gang
description [Display omitted] A novel all-fluorinated electrolyte that imparts high voltage and fast charging to Li||LiNiO2 cells has been developed. Meanwhile, a new solvent-chemically to derive a cathode-electrolyte interphase model is proposed to explain this excellent performance. To guide the design of novel electrolytes at the molecular scale. •A fluorinated electrolyte for high voltage and fast charging to Li||LiNiO2 cells.•Solvation structure deriving a cathode-electrolyte interphase model.•Promote LiNiO2 delithiation and electrolyte oxidation stability. Ni-rich layered oxides are considered ideal positive electrode materials for next-generation state-of-the-art Li-based batteries owing to their high energy densities. However, the structural degradation of Ni-rich positive electrodes and electrolyte decomposition presents significant challenges, particularly at high cut-off voltages. Herein, we report a novel electrolyte consisting of fluorinated solvents that enables the long lifespan of a Li||LiNiO2 cell with a cut-off voltage of up to 4.5 V. The Li||LiNiO2 cell retains 93.8% of its initial capacity after 200 cycles. The cycling stability was ascribed to the fluorinated solvents dominating the first structural shell of Li+ and deriving a robust cathode-electrolyte interphase (CEI) on the positive electrode. Compared to commercial electrolytes, the fluorinated electrolyte inhibits the structural degradation, stress corrosion cracking, and interphase side reactions of the LiNiO2 electrode. On the Li negative electrode side, ideal Li plating/stripping and the inhibition of the attack of Ni2+ are achieved. Furthermore, the 4.5 V-Li||LiNiO2 cell exhibited a capacity retention of 80.2% after 100 cycles, even under extremely fast-charging conditions.
doi_str_mv 10.1016/j.cej.2023.144890
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2023_144890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894723036215</els_id><sourcerecordid>S1385894723036215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-f486d1d6563515a3536ea42a2fd55f5364b38c06b8847fe5eeb3a2b3ed94bcf83</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaD-jOP2BXT1umqxL6AtNs2rWQ5ZGjoFpFUgKBfHwd0nVXcy_MGYaD0D3BFcGkfthWBrYVxZRVhHPZ4gu0ILJhJaOEXs6ZSVHKljfX6CalLca4bkm7QJsXvwvRTTrDUBgd-3CKZa_T3MGDyTH4Q4YCptFNAPPqWKTg9zq7MBUpx53JuwiFDbHYuHFT7oPPeoSic8dj5z7cmhYGvL9FV1b7BHd_c4m-Xp4_V29lt359Xz11paFtk0vLZT2QoRY1E0RoJlgNmlNN7SCEnRvvmTS47qXkjQUB0DNNewZDy3tjJVsicr5rYkgpglU_0X3reFAEq5MqtVWzKnVSpc6qZubxzMD82N5BVMk4mAwMLs4G1BDcP_Qv3Tpz-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluorinated carbonate-based electrolyte engineering solvation structure for high-voltage Li||LiNiO2 cell</title><source>ScienceDirect Freedom Collection</source><creator>Zheng, Wei-Chen ; Lin, Jin-Xia ; Chen, Hui ; Liu, Shi-Shi ; Shi, Chen-Guang ; Huang, Ling ; Sun, Shi-Gang</creator><creatorcontrib>Zheng, Wei-Chen ; Lin, Jin-Xia ; Chen, Hui ; Liu, Shi-Shi ; Shi, Chen-Guang ; Huang, Ling ; Sun, Shi-Gang</creatorcontrib><description>[Display omitted] A novel all-fluorinated electrolyte that imparts high voltage and fast charging to Li||LiNiO2 cells has been developed. Meanwhile, a new solvent-chemically to derive a cathode-electrolyte interphase model is proposed to explain this excellent performance. To guide the design of novel electrolytes at the molecular scale. •A fluorinated electrolyte for high voltage and fast charging to Li||LiNiO2 cells.•Solvation structure deriving a cathode-electrolyte interphase model.•Promote LiNiO2 delithiation and electrolyte oxidation stability. Ni-rich layered oxides are considered ideal positive electrode materials for next-generation state-of-the-art Li-based batteries owing to their high energy densities. However, the structural degradation of Ni-rich positive electrodes and electrolyte decomposition presents significant challenges, particularly at high cut-off voltages. Herein, we report a novel electrolyte consisting of fluorinated solvents that enables the long lifespan of a Li||LiNiO2 cell with a cut-off voltage of up to 4.5 V. The Li||LiNiO2 cell retains 93.8% of its initial capacity after 200 cycles. The cycling stability was ascribed to the fluorinated solvents dominating the first structural shell of Li+ and deriving a robust cathode-electrolyte interphase (CEI) on the positive electrode. Compared to commercial electrolytes, the fluorinated electrolyte inhibits the structural degradation, stress corrosion cracking, and interphase side reactions of the LiNiO2 electrode. On the Li negative electrode side, ideal Li plating/stripping and the inhibition of the attack of Ni2+ are achieved. Furthermore, the 4.5 V-Li||LiNiO2 cell exhibited a capacity retention of 80.2% after 100 cycles, even under extremely fast-charging conditions.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2023.144890</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Fluorinated electrolyte ; High-voltage ; Interphase engineering ; LiNiO2 positive electrode ; Solvation structure</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2023-09, Vol.472, p.144890, Article 144890</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-f486d1d6563515a3536ea42a2fd55f5364b38c06b8847fe5eeb3a2b3ed94bcf83</citedby><cites>FETCH-LOGICAL-c297t-f486d1d6563515a3536ea42a2fd55f5364b38c06b8847fe5eeb3a2b3ed94bcf83</cites><orcidid>0000-0003-0407-3867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zheng, Wei-Chen</creatorcontrib><creatorcontrib>Lin, Jin-Xia</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Liu, Shi-Shi</creatorcontrib><creatorcontrib>Shi, Chen-Guang</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Sun, Shi-Gang</creatorcontrib><title>Fluorinated carbonate-based electrolyte engineering solvation structure for high-voltage Li||LiNiO2 cell</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>[Display omitted] A novel all-fluorinated electrolyte that imparts high voltage and fast charging to Li||LiNiO2 cells has been developed. Meanwhile, a new solvent-chemically to derive a cathode-electrolyte interphase model is proposed to explain this excellent performance. To guide the design of novel electrolytes at the molecular scale. •A fluorinated electrolyte for high voltage and fast charging to Li||LiNiO2 cells.•Solvation structure deriving a cathode-electrolyte interphase model.•Promote LiNiO2 delithiation and electrolyte oxidation stability. Ni-rich layered oxides are considered ideal positive electrode materials for next-generation state-of-the-art Li-based batteries owing to their high energy densities. However, the structural degradation of Ni-rich positive electrodes and electrolyte decomposition presents significant challenges, particularly at high cut-off voltages. Herein, we report a novel electrolyte consisting of fluorinated solvents that enables the long lifespan of a Li||LiNiO2 cell with a cut-off voltage of up to 4.5 V. The Li||LiNiO2 cell retains 93.8% of its initial capacity after 200 cycles. The cycling stability was ascribed to the fluorinated solvents dominating the first structural shell of Li+ and deriving a robust cathode-electrolyte interphase (CEI) on the positive electrode. Compared to commercial electrolytes, the fluorinated electrolyte inhibits the structural degradation, stress corrosion cracking, and interphase side reactions of the LiNiO2 electrode. On the Li negative electrode side, ideal Li plating/stripping and the inhibition of the attack of Ni2+ are achieved. Furthermore, the 4.5 V-Li||LiNiO2 cell exhibited a capacity retention of 80.2% after 100 cycles, even under extremely fast-charging conditions.</description><subject>Fluorinated electrolyte</subject><subject>High-voltage</subject><subject>Interphase engineering</subject><subject>LiNiO2 positive electrode</subject><subject>Solvation structure</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoWnaD-jOP2BXT1umqxL6AtNs2rWQ5ZGjoFpFUgKBfHwd0nVXcy_MGYaD0D3BFcGkfthWBrYVxZRVhHPZ4gu0ILJhJaOEXs6ZSVHKljfX6CalLca4bkm7QJsXvwvRTTrDUBgd-3CKZa_T3MGDyTH4Q4YCptFNAPPqWKTg9zq7MBUpx53JuwiFDbHYuHFT7oPPeoSic8dj5z7cmhYGvL9FV1b7BHd_c4m-Xp4_V29lt359Xz11paFtk0vLZT2QoRY1E0RoJlgNmlNN7SCEnRvvmTS47qXkjQUB0DNNewZDy3tjJVsicr5rYkgpglU_0X3reFAEq5MqtVWzKnVSpc6qZubxzMD82N5BVMk4mAwMLs4G1BDcP_Qv3Tpz-w</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Zheng, Wei-Chen</creator><creator>Lin, Jin-Xia</creator><creator>Chen, Hui</creator><creator>Liu, Shi-Shi</creator><creator>Shi, Chen-Guang</creator><creator>Huang, Ling</creator><creator>Sun, Shi-Gang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0407-3867</orcidid></search><sort><creationdate>20230915</creationdate><title>Fluorinated carbonate-based electrolyte engineering solvation structure for high-voltage Li||LiNiO2 cell</title><author>Zheng, Wei-Chen ; Lin, Jin-Xia ; Chen, Hui ; Liu, Shi-Shi ; Shi, Chen-Guang ; Huang, Ling ; Sun, Shi-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-f486d1d6563515a3536ea42a2fd55f5364b38c06b8847fe5eeb3a2b3ed94bcf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fluorinated electrolyte</topic><topic>High-voltage</topic><topic>Interphase engineering</topic><topic>LiNiO2 positive electrode</topic><topic>Solvation structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wei-Chen</creatorcontrib><creatorcontrib>Lin, Jin-Xia</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Liu, Shi-Shi</creatorcontrib><creatorcontrib>Shi, Chen-Guang</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Sun, Shi-Gang</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wei-Chen</au><au>Lin, Jin-Xia</au><au>Chen, Hui</au><au>Liu, Shi-Shi</au><au>Shi, Chen-Guang</au><au>Huang, Ling</au><au>Sun, Shi-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorinated carbonate-based electrolyte engineering solvation structure for high-voltage Li||LiNiO2 cell</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2023-09-15</date><risdate>2023</risdate><volume>472</volume><spage>144890</spage><pages>144890-</pages><artnum>144890</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>[Display omitted] A novel all-fluorinated electrolyte that imparts high voltage and fast charging to Li||LiNiO2 cells has been developed. Meanwhile, a new solvent-chemically to derive a cathode-electrolyte interphase model is proposed to explain this excellent performance. To guide the design of novel electrolytes at the molecular scale. •A fluorinated electrolyte for high voltage and fast charging to Li||LiNiO2 cells.•Solvation structure deriving a cathode-electrolyte interphase model.•Promote LiNiO2 delithiation and electrolyte oxidation stability. Ni-rich layered oxides are considered ideal positive electrode materials for next-generation state-of-the-art Li-based batteries owing to their high energy densities. However, the structural degradation of Ni-rich positive electrodes and electrolyte decomposition presents significant challenges, particularly at high cut-off voltages. Herein, we report a novel electrolyte consisting of fluorinated solvents that enables the long lifespan of a Li||LiNiO2 cell with a cut-off voltage of up to 4.5 V. The Li||LiNiO2 cell retains 93.8% of its initial capacity after 200 cycles. The cycling stability was ascribed to the fluorinated solvents dominating the first structural shell of Li+ and deriving a robust cathode-electrolyte interphase (CEI) on the positive electrode. Compared to commercial electrolytes, the fluorinated electrolyte inhibits the structural degradation, stress corrosion cracking, and interphase side reactions of the LiNiO2 electrode. On the Li negative electrode side, ideal Li plating/stripping and the inhibition of the attack of Ni2+ are achieved. Furthermore, the 4.5 V-Li||LiNiO2 cell exhibited a capacity retention of 80.2% after 100 cycles, even under extremely fast-charging conditions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2023.144890</doi><orcidid>https://orcid.org/0000-0003-0407-3867</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2023-09, Vol.472, p.144890, Article 144890
issn 1385-8947
1873-3212
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2023_144890
source ScienceDirect Freedom Collection
subjects Fluorinated electrolyte
High-voltage
Interphase engineering
LiNiO2 positive electrode
Solvation structure
title Fluorinated carbonate-based electrolyte engineering solvation structure for high-voltage Li||LiNiO2 cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorinated%20carbonate-based%20electrolyte%20engineering%20solvation%20structure%20for%20high-voltage%20Li%7C%7CLiNiO2%20cell&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Zheng,%20Wei-Chen&rft.date=2023-09-15&rft.volume=472&rft.spage=144890&rft.pages=144890-&rft.artnum=144890&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2023.144890&rft_dat=%3Celsevier_cross%3ES1385894723036215%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-f486d1d6563515a3536ea42a2fd55f5364b38c06b8847fe5eeb3a2b3ed94bcf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true