Loading…

Integrations of desulfurization, carbon capture, and methanation at an isothermal intermediate temperature

[Display omitted] •Integrations of SO2 removal, CO2 capture, and methanation are developed.•100% removals of SO2 and CO2, 93.6% CO2 conversion after 20 cycles are achieved.•In-situ STEM records the dynamic evolution of CO2 adsorption on AMS-MgO pellets.•An isothermal two columns system with dual-bed...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2024-01, Vol.479, p.147006, Article 147006
Main Authors: Gao, Zihao, Jiang, Yongjun, Sun, Zheyi, Shao, Bin, Ma, Rongting, Jia, Zhonghao, Zhou, Lihui, Dai, Sheng, Hu, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c249t-ed2e1d4d521f5837d8082980d661a39c2f2795b7d2a9b55fe8acec1e4eb27f843
container_end_page
container_issue
container_start_page 147006
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 479
creator Gao, Zihao
Jiang, Yongjun
Sun, Zheyi
Shao, Bin
Ma, Rongting
Jia, Zhonghao
Zhou, Lihui
Dai, Sheng
Hu, Jun
description [Display omitted] •Integrations of SO2 removal, CO2 capture, and methanation are developed.•100% removals of SO2 and CO2, 93.6% CO2 conversion after 20 cycles are achieved.•In-situ STEM records the dynamic evolution of CO2 adsorption on AMS-MgO pellets.•An isothermal two columns system with dual-bed mode is constructed.•Dynamic matching among ZnO-CaO, AMS-MgO, and Ni-La/Al2O3 pellets is realized. Integrated CO2 capture and conversion (iCCC) technology has been recognized as the most efficient technology for Carbon Capture, Utilization, and Storage (CCUS). However, its industrialization is hindered by some unsolved engineering problems. Typically, sulfur impurities in most industrial flue gas will have significant poisoning effects on the process. Herein, we report integrations of SO2 removal, CO2 capture and conversion (iSCCC) at an isothermal intermediate temperature in a two-fixed-bed column system. By rationally developing the SO2 adsorbent pellets of ZnO-CaO, the CO2 adsorbent pellets of AMS-MgO, and the methanation catalyst pellets of Ni-La/Al2O3, each individual unit is optimized. Specifically, the in-situ dynamic structure evolution observed by the atmospheric aberration-corrected scanning transmission electron microscopy as well as the theoretical dynamics calculation provide an in-depth understanding of the CO2 adsorption and desorption performance changing with the temperature on the AMS-MgO pellets, which builds a bridge for a successful 99.3 % CO2 methanation efficiency. As a result, the matched iSCCC process demonstrates exceptional performance from simulated flue gas containing 1000 ppm SO2 and 20 vol% CO2, with full desulfurization and decarbonation and a CO2 conversion efficiency of 93.6 % after 20 cycles isothermally at 400 °C, superior to all the reported performance so far as we know, providing a promising route to practical large-scale iSCCC towards carbon neutrality.
doi_str_mv 10.1016/j.cej.2023.147006
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2023_147006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894723057376</els_id><sourcerecordid>S1385894723057376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-ed2e1d4d521f5837d8082980d661a39c2f2795b7d2a9b55fe8acec1e4eb27f843</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C4P0BmTzE8SXEnRWii40XXIJDc2Q2emJKmgT2_aunZ1L4dzDvd-CN1TUlJC24e-NNCXjLCqpDUnpL1AMyp4VVSMssu8V6IphKz5NbqJsSfZIamcoX49JvgMOvlpjHhy2EI87Nwh-J-TtsBGh24a89inQ4AF1qPFA6StHk8GrFOWsI9T2kIY9A773BgGsF4nwAmGPeT6HL1FV07vItz9zTn6eHl-X74Wm7fVevm0KQyrZSrAMqC2tg2jrhEVt4IIJgWxbUt1JQ1zjMum45Zp2TWNA6ENGAo1dIw7UVdzRM-9JkwxBnBqH_ygw7eiRB1hqV5lWOoIS51h5czjOQP5sC8PQUXjYTT5iwAmKTv5f9K_6vp00Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrations of desulfurization, carbon capture, and methanation at an isothermal intermediate temperature</title><source>ScienceDirect Journals</source><creator>Gao, Zihao ; Jiang, Yongjun ; Sun, Zheyi ; Shao, Bin ; Ma, Rongting ; Jia, Zhonghao ; Zhou, Lihui ; Dai, Sheng ; Hu, Jun</creator><creatorcontrib>Gao, Zihao ; Jiang, Yongjun ; Sun, Zheyi ; Shao, Bin ; Ma, Rongting ; Jia, Zhonghao ; Zhou, Lihui ; Dai, Sheng ; Hu, Jun</creatorcontrib><description>[Display omitted] •Integrations of SO2 removal, CO2 capture, and methanation are developed.•100% removals of SO2 and CO2, 93.6% CO2 conversion after 20 cycles are achieved.•In-situ STEM records the dynamic evolution of CO2 adsorption on AMS-MgO pellets.•An isothermal two columns system with dual-bed mode is constructed.•Dynamic matching among ZnO-CaO, AMS-MgO, and Ni-La/Al2O3 pellets is realized. Integrated CO2 capture and conversion (iCCC) technology has been recognized as the most efficient technology for Carbon Capture, Utilization, and Storage (CCUS). However, its industrialization is hindered by some unsolved engineering problems. Typically, sulfur impurities in most industrial flue gas will have significant poisoning effects on the process. Herein, we report integrations of SO2 removal, CO2 capture and conversion (iSCCC) at an isothermal intermediate temperature in a two-fixed-bed column system. By rationally developing the SO2 adsorbent pellets of ZnO-CaO, the CO2 adsorbent pellets of AMS-MgO, and the methanation catalyst pellets of Ni-La/Al2O3, each individual unit is optimized. Specifically, the in-situ dynamic structure evolution observed by the atmospheric aberration-corrected scanning transmission electron microscopy as well as the theoretical dynamics calculation provide an in-depth understanding of the CO2 adsorption and desorption performance changing with the temperature on the AMS-MgO pellets, which builds a bridge for a successful 99.3 % CO2 methanation efficiency. As a result, the matched iSCCC process demonstrates exceptional performance from simulated flue gas containing 1000 ppm SO2 and 20 vol% CO2, with full desulfurization and decarbonation and a CO2 conversion efficiency of 93.6 % after 20 cycles isothermally at 400 °C, superior to all the reported performance so far as we know, providing a promising route to practical large-scale iSCCC towards carbon neutrality.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2023.147006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CO2 capture ; Desulfurization ; Integrations ; Intermediate temperature ; Methanation</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2024-01, Vol.479, p.147006, Article 147006</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-ed2e1d4d521f5837d8082980d661a39c2f2795b7d2a9b55fe8acec1e4eb27f843</cites><orcidid>0000-0002-3020-0148 ; 0000-0001-5787-0179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Zihao</creatorcontrib><creatorcontrib>Jiang, Yongjun</creatorcontrib><creatorcontrib>Sun, Zheyi</creatorcontrib><creatorcontrib>Shao, Bin</creatorcontrib><creatorcontrib>Ma, Rongting</creatorcontrib><creatorcontrib>Jia, Zhonghao</creatorcontrib><creatorcontrib>Zhou, Lihui</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><title>Integrations of desulfurization, carbon capture, and methanation at an isothermal intermediate temperature</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>[Display omitted] •Integrations of SO2 removal, CO2 capture, and methanation are developed.•100% removals of SO2 and CO2, 93.6% CO2 conversion after 20 cycles are achieved.•In-situ STEM records the dynamic evolution of CO2 adsorption on AMS-MgO pellets.•An isothermal two columns system with dual-bed mode is constructed.•Dynamic matching among ZnO-CaO, AMS-MgO, and Ni-La/Al2O3 pellets is realized. Integrated CO2 capture and conversion (iCCC) technology has been recognized as the most efficient technology for Carbon Capture, Utilization, and Storage (CCUS). However, its industrialization is hindered by some unsolved engineering problems. Typically, sulfur impurities in most industrial flue gas will have significant poisoning effects on the process. Herein, we report integrations of SO2 removal, CO2 capture and conversion (iSCCC) at an isothermal intermediate temperature in a two-fixed-bed column system. By rationally developing the SO2 adsorbent pellets of ZnO-CaO, the CO2 adsorbent pellets of AMS-MgO, and the methanation catalyst pellets of Ni-La/Al2O3, each individual unit is optimized. Specifically, the in-situ dynamic structure evolution observed by the atmospheric aberration-corrected scanning transmission electron microscopy as well as the theoretical dynamics calculation provide an in-depth understanding of the CO2 adsorption and desorption performance changing with the temperature on the AMS-MgO pellets, which builds a bridge for a successful 99.3 % CO2 methanation efficiency. As a result, the matched iSCCC process demonstrates exceptional performance from simulated flue gas containing 1000 ppm SO2 and 20 vol% CO2, with full desulfurization and decarbonation and a CO2 conversion efficiency of 93.6 % after 20 cycles isothermally at 400 °C, superior to all the reported performance so far as we know, providing a promising route to practical large-scale iSCCC towards carbon neutrality.</description><subject>CO2 capture</subject><subject>Desulfurization</subject><subject>Integrations</subject><subject>Intermediate temperature</subject><subject>Methanation</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C4P0BmTzE8SXEnRWii40XXIJDc2Q2emJKmgT2_aunZ1L4dzDvd-CN1TUlJC24e-NNCXjLCqpDUnpL1AMyp4VVSMssu8V6IphKz5NbqJsSfZIamcoX49JvgMOvlpjHhy2EI87Nwh-J-TtsBGh24a89inQ4AF1qPFA6StHk8GrFOWsI9T2kIY9A773BgGsF4nwAmGPeT6HL1FV07vItz9zTn6eHl-X74Wm7fVevm0KQyrZSrAMqC2tg2jrhEVt4IIJgWxbUt1JQ1zjMum45Zp2TWNA6ENGAo1dIw7UVdzRM-9JkwxBnBqH_ygw7eiRB1hqV5lWOoIS51h5czjOQP5sC8PQUXjYTT5iwAmKTv5f9K_6vp00Q</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Gao, Zihao</creator><creator>Jiang, Yongjun</creator><creator>Sun, Zheyi</creator><creator>Shao, Bin</creator><creator>Ma, Rongting</creator><creator>Jia, Zhonghao</creator><creator>Zhou, Lihui</creator><creator>Dai, Sheng</creator><creator>Hu, Jun</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3020-0148</orcidid><orcidid>https://orcid.org/0000-0001-5787-0179</orcidid></search><sort><creationdate>20240101</creationdate><title>Integrations of desulfurization, carbon capture, and methanation at an isothermal intermediate temperature</title><author>Gao, Zihao ; Jiang, Yongjun ; Sun, Zheyi ; Shao, Bin ; Ma, Rongting ; Jia, Zhonghao ; Zhou, Lihui ; Dai, Sheng ; Hu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-ed2e1d4d521f5837d8082980d661a39c2f2795b7d2a9b55fe8acec1e4eb27f843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CO2 capture</topic><topic>Desulfurization</topic><topic>Integrations</topic><topic>Intermediate temperature</topic><topic>Methanation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Zihao</creatorcontrib><creatorcontrib>Jiang, Yongjun</creatorcontrib><creatorcontrib>Sun, Zheyi</creatorcontrib><creatorcontrib>Shao, Bin</creatorcontrib><creatorcontrib>Ma, Rongting</creatorcontrib><creatorcontrib>Jia, Zhonghao</creatorcontrib><creatorcontrib>Zhou, Lihui</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Zihao</au><au>Jiang, Yongjun</au><au>Sun, Zheyi</au><au>Shao, Bin</au><au>Ma, Rongting</au><au>Jia, Zhonghao</au><au>Zhou, Lihui</au><au>Dai, Sheng</au><au>Hu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrations of desulfurization, carbon capture, and methanation at an isothermal intermediate temperature</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>479</volume><spage>147006</spage><pages>147006-</pages><artnum>147006</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>[Display omitted] •Integrations of SO2 removal, CO2 capture, and methanation are developed.•100% removals of SO2 and CO2, 93.6% CO2 conversion after 20 cycles are achieved.•In-situ STEM records the dynamic evolution of CO2 adsorption on AMS-MgO pellets.•An isothermal two columns system with dual-bed mode is constructed.•Dynamic matching among ZnO-CaO, AMS-MgO, and Ni-La/Al2O3 pellets is realized. Integrated CO2 capture and conversion (iCCC) technology has been recognized as the most efficient technology for Carbon Capture, Utilization, and Storage (CCUS). However, its industrialization is hindered by some unsolved engineering problems. Typically, sulfur impurities in most industrial flue gas will have significant poisoning effects on the process. Herein, we report integrations of SO2 removal, CO2 capture and conversion (iSCCC) at an isothermal intermediate temperature in a two-fixed-bed column system. By rationally developing the SO2 adsorbent pellets of ZnO-CaO, the CO2 adsorbent pellets of AMS-MgO, and the methanation catalyst pellets of Ni-La/Al2O3, each individual unit is optimized. Specifically, the in-situ dynamic structure evolution observed by the atmospheric aberration-corrected scanning transmission electron microscopy as well as the theoretical dynamics calculation provide an in-depth understanding of the CO2 adsorption and desorption performance changing with the temperature on the AMS-MgO pellets, which builds a bridge for a successful 99.3 % CO2 methanation efficiency. As a result, the matched iSCCC process demonstrates exceptional performance from simulated flue gas containing 1000 ppm SO2 and 20 vol% CO2, with full desulfurization and decarbonation and a CO2 conversion efficiency of 93.6 % after 20 cycles isothermally at 400 °C, superior to all the reported performance so far as we know, providing a promising route to practical large-scale iSCCC towards carbon neutrality.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2023.147006</doi><orcidid>https://orcid.org/0000-0002-3020-0148</orcidid><orcidid>https://orcid.org/0000-0001-5787-0179</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2024-01, Vol.479, p.147006, Article 147006
issn 1385-8947
1873-3212
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2023_147006
source ScienceDirect Journals
subjects CO2 capture
Desulfurization
Integrations
Intermediate temperature
Methanation
title Integrations of desulfurization, carbon capture, and methanation at an isothermal intermediate temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrations%20of%20desulfurization,%20carbon%20capture,%20and%20methanation%20at%20an%20isothermal%20intermediate%20temperature&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Gao,%20Zihao&rft.date=2024-01-01&rft.volume=479&rft.spage=147006&rft.pages=147006-&rft.artnum=147006&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2023.147006&rft_dat=%3Celsevier_cross%3ES1385894723057376%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-ed2e1d4d521f5837d8082980d661a39c2f2795b7d2a9b55fe8acec1e4eb27f843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true