Loading…

Confined bismuth single atoms and nanoparticles dual-sites constructed via reverse etching for CO2 photoreduction to CH4

•Bi single atoms and nanoparticles dual-sites are presented on TiO2 for the first time.•A reverse etching route was firstly used to achieve confined dual-sites.•The porous dual-Bi/TiO2 catalyst achieves a CH4 generation rate of 103.89 μmol·g−1·h−1 with an impressive selectivity of 96.87 %. Synchroni...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2024-02, Vol.482, p.148782, Article 148782
Main Authors: Zhang, Dou, Sun, Ying-jie, Zhang, Kai-hua, Yang, Guang, Wang, Xiao-jing, Li, Yi-lei, Han, Hui-yun, Liu, Xinying, Han, Bao-Hang, Li, Fa-tang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c249t-4314c3e154b465d41f8c9c848c9863af16e84661c71475f62b42d53b6fd101773
container_end_page
container_issue
container_start_page 148782
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 482
creator Zhang, Dou
Sun, Ying-jie
Zhang, Kai-hua
Yang, Guang
Wang, Xiao-jing
Li, Yi-lei
Han, Hui-yun
Liu, Xinying
Han, Bao-Hang
Li, Fa-tang
description •Bi single atoms and nanoparticles dual-sites are presented on TiO2 for the first time.•A reverse etching route was firstly used to achieve confined dual-sites.•The porous dual-Bi/TiO2 catalyst achieves a CH4 generation rate of 103.89 μmol·g−1·h−1 with an impressive selectivity of 96.87 %. Synchronizing the directional photogenerated transfer of electrons and regulating the CO2 photocatalytic reduction process are key to achieving the efficient and highly selective photocatalytic reduction of CO2. The design of highly-dispersed active sites and the efficient collaboration of multiple sites are of great importance in attaining the above target. Herein, a reverse etching route was first proposed to confine Bi single atoms and nanoparticles as dual-sites for assisting CO2 photoreduction on TiO2, avoiding the mutual masking of the active sites. The Synergism of the dual-sites achieves the hydrodeoxygenation of * COOH and ushers the directional conversion of CO2 to CH4. Highly dispersed single Bi atoms could induce the transfer of photogenerated electrons, enhance CO2 absorption, and further provide active sites for reducing CO2 to *COOH intermediates. Besides, appropriate Bi nanoparticles could promote the separation and transfer of photogenerated and inhibit the formation of hydroxyl groups; more importantly, they could promote the release of protons, which would further accelerate the conversion of *COOH to CH4. After being integrated, the optimized dual-Bi/TiO2 catalyst achieves a CH4 generation rate of 103.89 μmol·g−1·h−1 with an impressive selectivity of 96.87 % as well as remarkable durability for photocatalytic CO2 reduction. This work provides new insights into developing robust catalysts through the artful design of synergistic catalytic sites for efficient photocatalytic CO2 conversion.
doi_str_mv 10.1016/j.cej.2024.148782
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2024_148782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894724002675</els_id><sourcerecordid>S1385894724002675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-4314c3e154b465d41f8c9c848c9863af16e84661c71475f62b42d53b6fd101773</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8AwnxI44jVigCilSpG1hbjj2hjlq7st0K_h6jsmYzcxdzrkYHoXvS1KQh4mGuDcw1bSivCZedpBdoQWTHKkYJvSyZybaSPe-u0U1Kc9M0oif9An0NwU_Og8WjS_tj3uLk_OcOsM5hn7D2Fnvtw0HH7MwOErZHvauSyyWa4FOOR5MLfXIaRzhBTIAhm20pwVOIeNhQfNiGHCLYcumCxzngYcVv0dWkdwnu_vYSfbw8vw-rar15fRue1pWhvM8VZ4QbBqTlIxet5WSSpjeSlykF0xMRILkQxHSEd-0k6MipbdkoJlu8dB1bInLuNTGkFGFSh-j2On4r0qhfdWpWRZ36VafO6grzeGagPHZyEFUyDrwB6yKYrGxw_9A_1SN3xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Confined bismuth single atoms and nanoparticles dual-sites constructed via reverse etching for CO2 photoreduction to CH4</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Dou ; Sun, Ying-jie ; Zhang, Kai-hua ; Yang, Guang ; Wang, Xiao-jing ; Li, Yi-lei ; Han, Hui-yun ; Liu, Xinying ; Han, Bao-Hang ; Li, Fa-tang</creator><creatorcontrib>Zhang, Dou ; Sun, Ying-jie ; Zhang, Kai-hua ; Yang, Guang ; Wang, Xiao-jing ; Li, Yi-lei ; Han, Hui-yun ; Liu, Xinying ; Han, Bao-Hang ; Li, Fa-tang</creatorcontrib><description>•Bi single atoms and nanoparticles dual-sites are presented on TiO2 for the first time.•A reverse etching route was firstly used to achieve confined dual-sites.•The porous dual-Bi/TiO2 catalyst achieves a CH4 generation rate of 103.89 μmol·g−1·h−1 with an impressive selectivity of 96.87 %. Synchronizing the directional photogenerated transfer of electrons and regulating the CO2 photocatalytic reduction process are key to achieving the efficient and highly selective photocatalytic reduction of CO2. The design of highly-dispersed active sites and the efficient collaboration of multiple sites are of great importance in attaining the above target. Herein, a reverse etching route was first proposed to confine Bi single atoms and nanoparticles as dual-sites for assisting CO2 photoreduction on TiO2, avoiding the mutual masking of the active sites. The Synergism of the dual-sites achieves the hydrodeoxygenation of * COOH and ushers the directional conversion of CO2 to CH4. Highly dispersed single Bi atoms could induce the transfer of photogenerated electrons, enhance CO2 absorption, and further provide active sites for reducing CO2 to *COOH intermediates. Besides, appropriate Bi nanoparticles could promote the separation and transfer of photogenerated and inhibit the formation of hydroxyl groups; more importantly, they could promote the release of protons, which would further accelerate the conversion of *COOH to CH4. After being integrated, the optimized dual-Bi/TiO2 catalyst achieves a CH4 generation rate of 103.89 μmol·g−1·h−1 with an impressive selectivity of 96.87 % as well as remarkable durability for photocatalytic CO2 reduction. This work provides new insights into developing robust catalysts through the artful design of synergistic catalytic sites for efficient photocatalytic CO2 conversion.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2024.148782</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bi nanoparticle ; Bi single-atom ; Dual active site ; Photocatalytic CO2 reduction ; TiO2</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2024-02, Vol.482, p.148782, Article 148782</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-4314c3e154b465d41f8c9c848c9863af16e84661c71475f62b42d53b6fd101773</cites><orcidid>0000-0003-2368-2748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Dou</creatorcontrib><creatorcontrib>Sun, Ying-jie</creatorcontrib><creatorcontrib>Zhang, Kai-hua</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Wang, Xiao-jing</creatorcontrib><creatorcontrib>Li, Yi-lei</creatorcontrib><creatorcontrib>Han, Hui-yun</creatorcontrib><creatorcontrib>Liu, Xinying</creatorcontrib><creatorcontrib>Han, Bao-Hang</creatorcontrib><creatorcontrib>Li, Fa-tang</creatorcontrib><title>Confined bismuth single atoms and nanoparticles dual-sites constructed via reverse etching for CO2 photoreduction to CH4</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>•Bi single atoms and nanoparticles dual-sites are presented on TiO2 for the first time.•A reverse etching route was firstly used to achieve confined dual-sites.•The porous dual-Bi/TiO2 catalyst achieves a CH4 generation rate of 103.89 μmol·g−1·h−1 with an impressive selectivity of 96.87 %. Synchronizing the directional photogenerated transfer of electrons and regulating the CO2 photocatalytic reduction process are key to achieving the efficient and highly selective photocatalytic reduction of CO2. The design of highly-dispersed active sites and the efficient collaboration of multiple sites are of great importance in attaining the above target. Herein, a reverse etching route was first proposed to confine Bi single atoms and nanoparticles as dual-sites for assisting CO2 photoreduction on TiO2, avoiding the mutual masking of the active sites. The Synergism of the dual-sites achieves the hydrodeoxygenation of * COOH and ushers the directional conversion of CO2 to CH4. Highly dispersed single Bi atoms could induce the transfer of photogenerated electrons, enhance CO2 absorption, and further provide active sites for reducing CO2 to *COOH intermediates. Besides, appropriate Bi nanoparticles could promote the separation and transfer of photogenerated and inhibit the formation of hydroxyl groups; more importantly, they could promote the release of protons, which would further accelerate the conversion of *COOH to CH4. After being integrated, the optimized dual-Bi/TiO2 catalyst achieves a CH4 generation rate of 103.89 μmol·g−1·h−1 with an impressive selectivity of 96.87 % as well as remarkable durability for photocatalytic CO2 reduction. This work provides new insights into developing robust catalysts through the artful design of synergistic catalytic sites for efficient photocatalytic CO2 conversion.</description><subject>Bi nanoparticle</subject><subject>Bi single-atom</subject><subject>Dual active site</subject><subject>Photocatalytic CO2 reduction</subject><subject>TiO2</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8AwnxI44jVigCilSpG1hbjj2hjlq7st0K_h6jsmYzcxdzrkYHoXvS1KQh4mGuDcw1bSivCZedpBdoQWTHKkYJvSyZybaSPe-u0U1Kc9M0oif9An0NwU_Og8WjS_tj3uLk_OcOsM5hn7D2Fnvtw0HH7MwOErZHvauSyyWa4FOOR5MLfXIaRzhBTIAhm20pwVOIeNhQfNiGHCLYcumCxzngYcVv0dWkdwnu_vYSfbw8vw-rar15fRue1pWhvM8VZ4QbBqTlIxet5WSSpjeSlykF0xMRILkQxHSEd-0k6MipbdkoJlu8dB1bInLuNTGkFGFSh-j2On4r0qhfdWpWRZ36VafO6grzeGagPHZyEFUyDrwB6yKYrGxw_9A_1SN3xQ</recordid><startdate>20240215</startdate><enddate>20240215</enddate><creator>Zhang, Dou</creator><creator>Sun, Ying-jie</creator><creator>Zhang, Kai-hua</creator><creator>Yang, Guang</creator><creator>Wang, Xiao-jing</creator><creator>Li, Yi-lei</creator><creator>Han, Hui-yun</creator><creator>Liu, Xinying</creator><creator>Han, Bao-Hang</creator><creator>Li, Fa-tang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2368-2748</orcidid></search><sort><creationdate>20240215</creationdate><title>Confined bismuth single atoms and nanoparticles dual-sites constructed via reverse etching for CO2 photoreduction to CH4</title><author>Zhang, Dou ; Sun, Ying-jie ; Zhang, Kai-hua ; Yang, Guang ; Wang, Xiao-jing ; Li, Yi-lei ; Han, Hui-yun ; Liu, Xinying ; Han, Bao-Hang ; Li, Fa-tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-4314c3e154b465d41f8c9c848c9863af16e84661c71475f62b42d53b6fd101773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bi nanoparticle</topic><topic>Bi single-atom</topic><topic>Dual active site</topic><topic>Photocatalytic CO2 reduction</topic><topic>TiO2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dou</creatorcontrib><creatorcontrib>Sun, Ying-jie</creatorcontrib><creatorcontrib>Zhang, Kai-hua</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Wang, Xiao-jing</creatorcontrib><creatorcontrib>Li, Yi-lei</creatorcontrib><creatorcontrib>Han, Hui-yun</creatorcontrib><creatorcontrib>Liu, Xinying</creatorcontrib><creatorcontrib>Han, Bao-Hang</creatorcontrib><creatorcontrib>Li, Fa-tang</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dou</au><au>Sun, Ying-jie</au><au>Zhang, Kai-hua</au><au>Yang, Guang</au><au>Wang, Xiao-jing</au><au>Li, Yi-lei</au><au>Han, Hui-yun</au><au>Liu, Xinying</au><au>Han, Bao-Hang</au><au>Li, Fa-tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confined bismuth single atoms and nanoparticles dual-sites constructed via reverse etching for CO2 photoreduction to CH4</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2024-02-15</date><risdate>2024</risdate><volume>482</volume><spage>148782</spage><pages>148782-</pages><artnum>148782</artnum><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>•Bi single atoms and nanoparticles dual-sites are presented on TiO2 for the first time.•A reverse etching route was firstly used to achieve confined dual-sites.•The porous dual-Bi/TiO2 catalyst achieves a CH4 generation rate of 103.89 μmol·g−1·h−1 with an impressive selectivity of 96.87 %. Synchronizing the directional photogenerated transfer of electrons and regulating the CO2 photocatalytic reduction process are key to achieving the efficient and highly selective photocatalytic reduction of CO2. The design of highly-dispersed active sites and the efficient collaboration of multiple sites are of great importance in attaining the above target. Herein, a reverse etching route was first proposed to confine Bi single atoms and nanoparticles as dual-sites for assisting CO2 photoreduction on TiO2, avoiding the mutual masking of the active sites. The Synergism of the dual-sites achieves the hydrodeoxygenation of * COOH and ushers the directional conversion of CO2 to CH4. Highly dispersed single Bi atoms could induce the transfer of photogenerated electrons, enhance CO2 absorption, and further provide active sites for reducing CO2 to *COOH intermediates. Besides, appropriate Bi nanoparticles could promote the separation and transfer of photogenerated and inhibit the formation of hydroxyl groups; more importantly, they could promote the release of protons, which would further accelerate the conversion of *COOH to CH4. After being integrated, the optimized dual-Bi/TiO2 catalyst achieves a CH4 generation rate of 103.89 μmol·g−1·h−1 with an impressive selectivity of 96.87 % as well as remarkable durability for photocatalytic CO2 reduction. This work provides new insights into developing robust catalysts through the artful design of synergistic catalytic sites for efficient photocatalytic CO2 conversion.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2024.148782</doi><orcidid>https://orcid.org/0000-0003-2368-2748</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2024-02, Vol.482, p.148782, Article 148782
issn 1385-8947
1873-3212
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2024_148782
source ScienceDirect Freedom Collection
subjects Bi nanoparticle
Bi single-atom
Dual active site
Photocatalytic CO2 reduction
TiO2
title Confined bismuth single atoms and nanoparticles dual-sites constructed via reverse etching for CO2 photoreduction to CH4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confined%20bismuth%20single%20atoms%20and%20nanoparticles%20dual-sites%20constructed%20via%20reverse%20etching%20for%20CO2%20photoreduction%20to%20CH4&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Zhang,%20Dou&rft.date=2024-02-15&rft.volume=482&rft.spage=148782&rft.pages=148782-&rft.artnum=148782&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2024.148782&rft_dat=%3Celsevier_cross%3ES1385894724002675%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-4314c3e154b465d41f8c9c848c9863af16e84661c71475f62b42d53b6fd101773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true