Loading…

Synergy of Mo doping and heterostructures in FeCo2S4@Mo-NiCo LDH/NF as durable and corrosion-resistance bifunctional electrocatalyst towards seawater electrolysis at industrial current density

[Display omitted] •H2 production catalyst to industrial electrolytic seawater was prepared by mild ways.•Mo doping and heterostructures reduce the adsorption energy barrier for intermediate.•The protective layer averts competitive ClOR process and no ClO− producing.•Mo doping and heterostructures en...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2024-04, Vol.485, p.150161, Article 150161
Main Authors: Ge, Suyu, Shen, Xueran, Gao, Jiaxin, Ma, Kaixuan, Zhao, Haoyu, Fu, Ruru, Feng, Caihong, Zhao, Yun, Jiao, Qingze, Li, Hansheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •H2 production catalyst to industrial electrolytic seawater was prepared by mild ways.•Mo doping and heterostructures reduce the adsorption energy barrier for intermediate.•The protective layer averts competitive ClOR process and no ClO− producing.•Mo doping and heterostructures endow catalyst stability and corrosion resistance. Electrolysis of seawater to produce hydrogen is a replenished way to utilize sustainable hydrogen energy. However, it remains a challenge to develop electrocatalysts with high chloride corrosion resistance and meet the industrial-required low overpotential at large current density. Here, a heterostructure FeCo2S4@Mo-NiCo LDH/NF (FCS@M-NC LDH/NF) catalyst consisting of Mo-doped NiCo LDH nanosheets on FeCo2S4 nanorods grown on nickel foam is demonstrated as a large-current–density electrocatalyst for seawater electrolysis. The hierarchical structure endows FCS@M-NC LDH/NF with abundant active sites and hydrophilic and aerophobic surfaces, which promotes the adsorption of OH− and accelerates gas-release capabilities during water electrolysis. Moreover, the incorporation of high-valence Mo species and the presence of heterostructures contribute to the outstanding corrosion resistance, selectivity, and activity of FCS@M-NC LDH/NF, which only requires 314 mV (HER) and 307 mV (OER) overpotential to achieve a large current density of 1000 mA cm−2 in alkaline electrolysis of seawater. Impressively, it maintains stable operation for 140 h at a current density of 500 mA cm−2 without the production of hypochlorite. Furthermore, density functional theory calculations demonstrate that Mo doping and formation of heterostructures decrease the adsorption energy barrier for intermediate on FCS@M-NC LDH/NF, which promotes electrocatalytic activity. The robust electronic interaction between FCS and M-NC LDH/NF promotes the redistribution of charges on the interface, boosting electrical conductivity and charge transfer in the FCS@M-NC LDH/NF. This study offers a mild way to create a bifunctional electrocatalyst with exceptional corrosion resistance and stability in industrial high-alkaline natural seawater electrolysis.
ISSN:1385-8947
DOI:10.1016/j.cej.2024.150161