Loading…

Tunicate cellulose nanocrystal reinforced conductive multi-responsive hydrogel with super flexible, fatigue resistant and self-healable capability for antibacterial flexible sensors

[Display omitted] •PCNAT-Fe hydrogel reinforced by TCNCs shows super flexible, fatigue resistant and self-healable capability;•PCNAT-Fe hydrogel exhibited excellent antibacterial capability and high conductivity;•PCNAT-Fe hydrogel exhibited excellent tensile strain/temperature/pH sensitive conductiv...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2024-09, Vol.495, p.153567, Article 153567
Main Authors: Yang, Qin, He, Mingtao, Yu, Zhongrui, Liu, Yijie, Bai, Yilan, Liu, Tianci, Wang, Tingting, Meng, Lingtao, Meng, Fanjun, Ma, Qinglin, Che, Yuju
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c179t-cb99971459a5b00a31792b2d346a16579e587fb6f39541976c5ef81cd6054a063
container_end_page
container_issue
container_start_page 153567
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 495
creator Yang, Qin
He, Mingtao
Yu, Zhongrui
Liu, Yijie
Bai, Yilan
Liu, Tianci
Wang, Tingting
Meng, Lingtao
Meng, Fanjun
Ma, Qinglin
Che, Yuju
description [Display omitted] •PCNAT-Fe hydrogel reinforced by TCNCs shows super flexible, fatigue resistant and self-healable capability;•PCNAT-Fe hydrogel exhibited excellent antibacterial capability and high conductivity;•PCNAT-Fe hydrogel exhibited excellent tensile strain/temperature/pH sensitive conductivity within fast responsive time;•PCNAT-Fe hydrogel could be used in large/small-scale human motion detecting and environmental information harvesting. Despite the current progress in multistimuli-responsive ionic conductive hydrogels, it is still a significant challenge to develop superior multistimuli-responsive ionic conductive hydrogels with satisfactory mechanical property, antibacterial and self-healing capability to meet the practical applications. In this study, a novel inherently antibacterial ionic conductive hydrogel (PCNAT-Fe) with excellent flexible, fatigue resistant, self-recovery ability, temperature/pH-responsive ability and tensile strain/temperature/pH-sensitive conductivity was fabricated via one step copolymerization of acrylic acid (AA) and N-isopropylacrylamide (NIPAM) in the presence with carboxymethyl chitosan (CMCS), Tunicate cellulose nanocrystals (TCNCs) and FeCl3. Benefiting from the synergy of TCNCs, FeCl3 and thermos/pH-sensitive materials, the hydrogel is concurrently endowed with excellent stretchability (1237.2 %), high conductivity (6.62S/m), biocompatibility, anti-drying capability, excellent mechanical and conductive repeatability. More importantly, the PCNAT-Fe hydrogel can ingeniously perceive large/subtle deformation (GF: 0.75 in the strain range of 0–50 %, 1.02 in the strain range of 50–150 %, response time 0.96 s and 2.81 in the strain range of 150–350 %, 3.40 in the strain range of 350–700 %), external temperature (TCR: −1.452 %/oC in 25–37 °C, responsive time 3.3 s and −1.062 %/oC in 37–75 °C) and pH values via the changes of relative resistance within fast responsive time, which can be applied as human–computer interfaces to interactively monitor human motions, ambient temperature and pH values in real time.
doi_str_mv 10.1016/j.cej.2024.153567
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2024_153567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894724050563</els_id><sourcerecordid>S1385894724050563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-cb99971459a5b00a31792b2d346a16579e587fb6f39541976c5ef81cd6054a063</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhHMACSg8ADc_AAl2Ezu1OCHEn4TEpZwtx1nTrYxd2U6hD8b74apw5bTSaGZ29FXVJaMNo0xcrxsD62ZO513DeMtFf1SdsnbB64Xs-pPqLKU1pVRIJk-r7-Xk0egMxIBzkwsJiNc-mLhLWTsSAb0N0cBITPDjZDJugXxMLmMdIW2CT3thtRtjeAdHPjGvSJo2EIl18IWDgytidcb3CUpZwtLqM9F-JAmcrVegnS4mYvRGD-gw70j5VwwZB20yRCwr_qpKxqcQ03l1bLVLcPF7Z9Xbw_3y7ql-eX18vrt9qQ3rZa7NIKXsWcel5gOlui3qfJiPbSc0E7yXwBe9HYRtJe-Y7IXhYBfMjILyTlPRzip26DUxpBTBqk3EDx13ilG1Z63WqrBWe9bqwLpkbg4ZKMO2CFElg-ALQYxgshoD_pP-AV7djzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tunicate cellulose nanocrystal reinforced conductive multi-responsive hydrogel with super flexible, fatigue resistant and self-healable capability for antibacterial flexible sensors</title><source>Elsevier</source><creator>Yang, Qin ; He, Mingtao ; Yu, Zhongrui ; Liu, Yijie ; Bai, Yilan ; Liu, Tianci ; Wang, Tingting ; Meng, Lingtao ; Meng, Fanjun ; Ma, Qinglin ; Che, Yuju</creator><creatorcontrib>Yang, Qin ; He, Mingtao ; Yu, Zhongrui ; Liu, Yijie ; Bai, Yilan ; Liu, Tianci ; Wang, Tingting ; Meng, Lingtao ; Meng, Fanjun ; Ma, Qinglin ; Che, Yuju</creatorcontrib><description>[Display omitted] •PCNAT-Fe hydrogel reinforced by TCNCs shows super flexible, fatigue resistant and self-healable capability;•PCNAT-Fe hydrogel exhibited excellent antibacterial capability and high conductivity;•PCNAT-Fe hydrogel exhibited excellent tensile strain/temperature/pH sensitive conductivity within fast responsive time;•PCNAT-Fe hydrogel could be used in large/small-scale human motion detecting and environmental information harvesting. Despite the current progress in multistimuli-responsive ionic conductive hydrogels, it is still a significant challenge to develop superior multistimuli-responsive ionic conductive hydrogels with satisfactory mechanical property, antibacterial and self-healing capability to meet the practical applications. In this study, a novel inherently antibacterial ionic conductive hydrogel (PCNAT-Fe) with excellent flexible, fatigue resistant, self-recovery ability, temperature/pH-responsive ability and tensile strain/temperature/pH-sensitive conductivity was fabricated via one step copolymerization of acrylic acid (AA) and N-isopropylacrylamide (NIPAM) in the presence with carboxymethyl chitosan (CMCS), Tunicate cellulose nanocrystals (TCNCs) and FeCl3. Benefiting from the synergy of TCNCs, FeCl3 and thermos/pH-sensitive materials, the hydrogel is concurrently endowed with excellent stretchability (1237.2 %), high conductivity (6.62S/m), biocompatibility, anti-drying capability, excellent mechanical and conductive repeatability. More importantly, the PCNAT-Fe hydrogel can ingeniously perceive large/subtle deformation (GF: 0.75 in the strain range of 0–50 %, 1.02 in the strain range of 50–150 %, response time 0.96 s and 2.81 in the strain range of 150–350 %, 3.40 in the strain range of 350–700 %), external temperature (TCR: −1.452 %/oC in 25–37 °C, responsive time 3.3 s and −1.062 %/oC in 37–75 °C) and pH values via the changes of relative resistance within fast responsive time, which can be applied as human–computer interfaces to interactively monitor human motions, ambient temperature and pH values in real time.</description><identifier>ISSN: 1385-8947</identifier><identifier>DOI: 10.1016/j.cej.2024.153567</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Antibacterial ; Ionic conductive hydrogel ; Multistimuli-sensitive ; tensile strain/temperature/pH responsive conductivity ; Tunicate cellulose nanocrystals</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2024-09, Vol.495, p.153567, Article 153567</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-cb99971459a5b00a31792b2d346a16579e587fb6f39541976c5ef81cd6054a063</cites><orcidid>0000-0002-3116-5268 ; 0000-0002-2734-8256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>He, Mingtao</creatorcontrib><creatorcontrib>Yu, Zhongrui</creatorcontrib><creatorcontrib>Liu, Yijie</creatorcontrib><creatorcontrib>Bai, Yilan</creatorcontrib><creatorcontrib>Liu, Tianci</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Meng, Lingtao</creatorcontrib><creatorcontrib>Meng, Fanjun</creatorcontrib><creatorcontrib>Ma, Qinglin</creatorcontrib><creatorcontrib>Che, Yuju</creatorcontrib><title>Tunicate cellulose nanocrystal reinforced conductive multi-responsive hydrogel with super flexible, fatigue resistant and self-healable capability for antibacterial flexible sensors</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>[Display omitted] •PCNAT-Fe hydrogel reinforced by TCNCs shows super flexible, fatigue resistant and self-healable capability;•PCNAT-Fe hydrogel exhibited excellent antibacterial capability and high conductivity;•PCNAT-Fe hydrogel exhibited excellent tensile strain/temperature/pH sensitive conductivity within fast responsive time;•PCNAT-Fe hydrogel could be used in large/small-scale human motion detecting and environmental information harvesting. Despite the current progress in multistimuli-responsive ionic conductive hydrogels, it is still a significant challenge to develop superior multistimuli-responsive ionic conductive hydrogels with satisfactory mechanical property, antibacterial and self-healing capability to meet the practical applications. In this study, a novel inherently antibacterial ionic conductive hydrogel (PCNAT-Fe) with excellent flexible, fatigue resistant, self-recovery ability, temperature/pH-responsive ability and tensile strain/temperature/pH-sensitive conductivity was fabricated via one step copolymerization of acrylic acid (AA) and N-isopropylacrylamide (NIPAM) in the presence with carboxymethyl chitosan (CMCS), Tunicate cellulose nanocrystals (TCNCs) and FeCl3. Benefiting from the synergy of TCNCs, FeCl3 and thermos/pH-sensitive materials, the hydrogel is concurrently endowed with excellent stretchability (1237.2 %), high conductivity (6.62S/m), biocompatibility, anti-drying capability, excellent mechanical and conductive repeatability. More importantly, the PCNAT-Fe hydrogel can ingeniously perceive large/subtle deformation (GF: 0.75 in the strain range of 0–50 %, 1.02 in the strain range of 50–150 %, response time 0.96 s and 2.81 in the strain range of 150–350 %, 3.40 in the strain range of 350–700 %), external temperature (TCR: −1.452 %/oC in 25–37 °C, responsive time 3.3 s and −1.062 %/oC in 37–75 °C) and pH values via the changes of relative resistance within fast responsive time, which can be applied as human–computer interfaces to interactively monitor human motions, ambient temperature and pH values in real time.</description><subject>Antibacterial</subject><subject>Ionic conductive hydrogel</subject><subject>Multistimuli-sensitive</subject><subject>tensile strain/temperature/pH responsive conductivity</subject><subject>Tunicate cellulose nanocrystals</subject><issn>1385-8947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhHMACSg8ADc_AAl2Ezu1OCHEn4TEpZwtx1nTrYxd2U6hD8b74apw5bTSaGZ29FXVJaMNo0xcrxsD62ZO513DeMtFf1SdsnbB64Xs-pPqLKU1pVRIJk-r7-Xk0egMxIBzkwsJiNc-mLhLWTsSAb0N0cBITPDjZDJugXxMLmMdIW2CT3thtRtjeAdHPjGvSJo2EIl18IWDgytidcb3CUpZwtLqM9F-JAmcrVegnS4mYvRGD-gw70j5VwwZB20yRCwr_qpKxqcQ03l1bLVLcPF7Z9Xbw_3y7ql-eX18vrt9qQ3rZa7NIKXsWcel5gOlui3qfJiPbSc0E7yXwBe9HYRtJe-Y7IXhYBfMjILyTlPRzip26DUxpBTBqk3EDx13ilG1Z63WqrBWe9bqwLpkbg4ZKMO2CFElg-ALQYxgshoD_pP-AV7djzQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Yang, Qin</creator><creator>He, Mingtao</creator><creator>Yu, Zhongrui</creator><creator>Liu, Yijie</creator><creator>Bai, Yilan</creator><creator>Liu, Tianci</creator><creator>Wang, Tingting</creator><creator>Meng, Lingtao</creator><creator>Meng, Fanjun</creator><creator>Ma, Qinglin</creator><creator>Che, Yuju</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3116-5268</orcidid><orcidid>https://orcid.org/0000-0002-2734-8256</orcidid></search><sort><creationdate>20240901</creationdate><title>Tunicate cellulose nanocrystal reinforced conductive multi-responsive hydrogel with super flexible, fatigue resistant and self-healable capability for antibacterial flexible sensors</title><author>Yang, Qin ; He, Mingtao ; Yu, Zhongrui ; Liu, Yijie ; Bai, Yilan ; Liu, Tianci ; Wang, Tingting ; Meng, Lingtao ; Meng, Fanjun ; Ma, Qinglin ; Che, Yuju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-cb99971459a5b00a31792b2d346a16579e587fb6f39541976c5ef81cd6054a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antibacterial</topic><topic>Ionic conductive hydrogel</topic><topic>Multistimuli-sensitive</topic><topic>tensile strain/temperature/pH responsive conductivity</topic><topic>Tunicate cellulose nanocrystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>He, Mingtao</creatorcontrib><creatorcontrib>Yu, Zhongrui</creatorcontrib><creatorcontrib>Liu, Yijie</creatorcontrib><creatorcontrib>Bai, Yilan</creatorcontrib><creatorcontrib>Liu, Tianci</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Meng, Lingtao</creatorcontrib><creatorcontrib>Meng, Fanjun</creatorcontrib><creatorcontrib>Ma, Qinglin</creatorcontrib><creatorcontrib>Che, Yuju</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qin</au><au>He, Mingtao</au><au>Yu, Zhongrui</au><au>Liu, Yijie</au><au>Bai, Yilan</au><au>Liu, Tianci</au><au>Wang, Tingting</au><au>Meng, Lingtao</au><au>Meng, Fanjun</au><au>Ma, Qinglin</au><au>Che, Yuju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunicate cellulose nanocrystal reinforced conductive multi-responsive hydrogel with super flexible, fatigue resistant and self-healable capability for antibacterial flexible sensors</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>495</volume><spage>153567</spage><pages>153567-</pages><artnum>153567</artnum><issn>1385-8947</issn><abstract>[Display omitted] •PCNAT-Fe hydrogel reinforced by TCNCs shows super flexible, fatigue resistant and self-healable capability;•PCNAT-Fe hydrogel exhibited excellent antibacterial capability and high conductivity;•PCNAT-Fe hydrogel exhibited excellent tensile strain/temperature/pH sensitive conductivity within fast responsive time;•PCNAT-Fe hydrogel could be used in large/small-scale human motion detecting and environmental information harvesting. Despite the current progress in multistimuli-responsive ionic conductive hydrogels, it is still a significant challenge to develop superior multistimuli-responsive ionic conductive hydrogels with satisfactory mechanical property, antibacterial and self-healing capability to meet the practical applications. In this study, a novel inherently antibacterial ionic conductive hydrogel (PCNAT-Fe) with excellent flexible, fatigue resistant, self-recovery ability, temperature/pH-responsive ability and tensile strain/temperature/pH-sensitive conductivity was fabricated via one step copolymerization of acrylic acid (AA) and N-isopropylacrylamide (NIPAM) in the presence with carboxymethyl chitosan (CMCS), Tunicate cellulose nanocrystals (TCNCs) and FeCl3. Benefiting from the synergy of TCNCs, FeCl3 and thermos/pH-sensitive materials, the hydrogel is concurrently endowed with excellent stretchability (1237.2 %), high conductivity (6.62S/m), biocompatibility, anti-drying capability, excellent mechanical and conductive repeatability. More importantly, the PCNAT-Fe hydrogel can ingeniously perceive large/subtle deformation (GF: 0.75 in the strain range of 0–50 %, 1.02 in the strain range of 50–150 %, response time 0.96 s and 2.81 in the strain range of 150–350 %, 3.40 in the strain range of 350–700 %), external temperature (TCR: −1.452 %/oC in 25–37 °C, responsive time 3.3 s and −1.062 %/oC in 37–75 °C) and pH values via the changes of relative resistance within fast responsive time, which can be applied as human–computer interfaces to interactively monitor human motions, ambient temperature and pH values in real time.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2024.153567</doi><orcidid>https://orcid.org/0000-0002-3116-5268</orcidid><orcidid>https://orcid.org/0000-0002-2734-8256</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2024-09, Vol.495, p.153567, Article 153567
issn 1385-8947
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2024_153567
source Elsevier
subjects Antibacterial
Ionic conductive hydrogel
Multistimuli-sensitive
tensile strain/temperature/pH responsive conductivity
Tunicate cellulose nanocrystals
title Tunicate cellulose nanocrystal reinforced conductive multi-responsive hydrogel with super flexible, fatigue resistant and self-healable capability for antibacterial flexible sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunicate%20cellulose%20nanocrystal%20reinforced%20conductive%20multi-responsive%20hydrogel%20with%20super%20flexible,%20fatigue%20resistant%20and%20self-healable%20capability%20for%20antibacterial%20flexible%20sensors&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Yang,%20Qin&rft.date=2024-09-01&rft.volume=495&rft.spage=153567&rft.pages=153567-&rft.artnum=153567&rft.issn=1385-8947&rft_id=info:doi/10.1016/j.cej.2024.153567&rft_dat=%3Celsevier_cross%3ES1385894724050563%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-cb99971459a5b00a31792b2d346a16579e587fb6f39541976c5ef81cd6054a063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true