Loading…

Interaction mechanism between MOF derived cobalt/rGO composite and sulfur for long cycle life of lithium–sulfur batteries

[Display omitted] •MOF-carbon sponge created additional space within the composite.•The sulfur-infiltrated N-Co-C composite presented relatively low Co-O content with the highest content of C=O, indicating cobalt reduction and the catalytic reaction of cobalt and sulfur, which facilitated the intera...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2024-10, Vol.497, p.154634, Article 154634
Main Authors: Cyril Karima, Neema, Jin, Song, Mook Choi, Sung, Jenerali Nyamtara, Kelvin, Maldonado Nogales, Paul, Cuong Nguyen, Manh, Hoon Kim, Sung, Nam Lim, Sung, Jeong, Soon-Ki, Kim, Hyun-Kyung, Ho Seo, Min, Ahn, Wook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c179t-2f5c2ea457f90798338aa923e7edc80cc8cf8dbcc05d18ce8f6b235964f6c0373
container_end_page
container_issue
container_start_page 154634
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 497
creator Cyril Karima, Neema
Jin, Song
Mook Choi, Sung
Jenerali Nyamtara, Kelvin
Maldonado Nogales, Paul
Cuong Nguyen, Manh
Hoon Kim, Sung
Nam Lim, Sung
Jeong, Soon-Ki
Kim, Hyun-Kyung
Ho Seo, Min
Ahn, Wook
description [Display omitted] •MOF-carbon sponge created additional space within the composite.•The sulfur-infiltrated N-Co-C composite presented relatively low Co-O content with the highest content of C=O, indicating cobalt reduction and the catalytic reaction of cobalt and sulfur, which facilitated the interaction of cobalt with lithium polysulfides, suppressed shuttle effect, and increased electric charge.•Stronger binding energies for GNS with hydroxyl and ether functionalization accelerate strong S8 adsorption and strain impact of Co13 NP further restrict the shuttling action.•The S coated N-Co-C layer enhanced good electrochemical performance due to adsorption of S8 on GNS. Within the ever-growing family of lithium batteries, lithium–sulfur batteries (LSB) have gained significant commercial concern owing to the impressive specific theoretical capacity of 1675 mAhg−1. Despite possessing a higher theoretical specific capacity, lithium-sulfur batteries (LSBs) face practical challenges due to the mobility of dissolved polysulfide intermediates, shuttle effect and the insulating properties of sulfur. These factors result in limited utilization of active material and rapid capacity deterioration. To minimize these problems, we designed a sponge cobalt wrapped in reduced graphene oxide (rGO) cathode material to enable effective polysulfide immobilization. The sponge cobalt nanoparticles from the ZIF 67 metal organic framework wrapped in rGO nanosheets increase the amount of space inside the carbon sponge; thus, has the significance for containing large amount of sulfur. The high affinity of cobalt for lithium polysulfide enabled robust lithium polysulfide adsorption against shuttling effects. The bonding between the cobalt and carbon functional groups captures lithium polysulfides on the composite surface, preventing their dissolution in the electrolyte. The cohabitation of sulfur and cobalt on rGO accelerated electron transfer rate for the transformation of sulfur, leading to efficient suppression of shuttle effect and steady sulfur electrochemistry. The sponge sulfur-infiltrated cobalt nanoparticles into rGO sheets exhibit a discharge capacity of 1176 mAhg−1 at 200 mAg−1 current density with cycling stability and retention capacity rate of 91 % for more than 140 cycles.
doi_str_mv 10.1016/j.cej.2024.154634
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cej_2024_154634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894724061254</els_id><sourcerecordid>S1385894724061254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-2f5c2ea457f90798338aa923e7edc80cc8cf8dbcc05d18ce8f6b235964f6c0373</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhrMAiVI4ADtfIKkd5-GIFapoqVTUDawtZzymjvKobLeoYsMduCEnIVW7ZvXPYr5_Rl8UPTCaMMqKWZMANklK0yxheVbw7CqaMC7yWFRZeRPdet9QSouKVZPoa9UHdAqCHXrSIWxVb31HagyfiD153SyIRmcPqAkMtWrDzC0349jtBm8DEtVr4vet2TtiBkfaof8gcIQWSWsNksGMGbZ23_1-_1z2ahXGkxb9XXRtVOvx_pLT6H3x_DZ_ideb5Wr-tI6BlVWIU5NDiirLS1PRshKcC6WqlGOJGgQFEGCErgForpkAFKaoU55XRWYKoLzk04ide8EN3js0cudsp9xRMipPxmQjR2PyZEyejY3M45nB8bGDRSc9WOwBtXUIQerB_kP_ASbfeZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interaction mechanism between MOF derived cobalt/rGO composite and sulfur for long cycle life of lithium–sulfur batteries</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Cyril Karima, Neema ; Jin, Song ; Mook Choi, Sung ; Jenerali Nyamtara, Kelvin ; Maldonado Nogales, Paul ; Cuong Nguyen, Manh ; Hoon Kim, Sung ; Nam Lim, Sung ; Jeong, Soon-Ki ; Kim, Hyun-Kyung ; Ho Seo, Min ; Ahn, Wook</creator><creatorcontrib>Cyril Karima, Neema ; Jin, Song ; Mook Choi, Sung ; Jenerali Nyamtara, Kelvin ; Maldonado Nogales, Paul ; Cuong Nguyen, Manh ; Hoon Kim, Sung ; Nam Lim, Sung ; Jeong, Soon-Ki ; Kim, Hyun-Kyung ; Ho Seo, Min ; Ahn, Wook</creatorcontrib><description>[Display omitted] •MOF-carbon sponge created additional space within the composite.•The sulfur-infiltrated N-Co-C composite presented relatively low Co-O content with the highest content of C=O, indicating cobalt reduction and the catalytic reaction of cobalt and sulfur, which facilitated the interaction of cobalt with lithium polysulfides, suppressed shuttle effect, and increased electric charge.•Stronger binding energies for GNS with hydroxyl and ether functionalization accelerate strong S8 adsorption and strain impact of Co13 NP further restrict the shuttling action.•The S coated N-Co-C layer enhanced good electrochemical performance due to adsorption of S8 on GNS. Within the ever-growing family of lithium batteries, lithium–sulfur batteries (LSB) have gained significant commercial concern owing to the impressive specific theoretical capacity of 1675 mAhg−1. Despite possessing a higher theoretical specific capacity, lithium-sulfur batteries (LSBs) face practical challenges due to the mobility of dissolved polysulfide intermediates, shuttle effect and the insulating properties of sulfur. These factors result in limited utilization of active material and rapid capacity deterioration. To minimize these problems, we designed a sponge cobalt wrapped in reduced graphene oxide (rGO) cathode material to enable effective polysulfide immobilization. The sponge cobalt nanoparticles from the ZIF 67 metal organic framework wrapped in rGO nanosheets increase the amount of space inside the carbon sponge; thus, has the significance for containing large amount of sulfur. The high affinity of cobalt for lithium polysulfide enabled robust lithium polysulfide adsorption against shuttling effects. The bonding between the cobalt and carbon functional groups captures lithium polysulfides on the composite surface, preventing their dissolution in the electrolyte. The cohabitation of sulfur and cobalt on rGO accelerated electron transfer rate for the transformation of sulfur, leading to efficient suppression of shuttle effect and steady sulfur electrochemistry. The sponge sulfur-infiltrated cobalt nanoparticles into rGO sheets exhibit a discharge capacity of 1176 mAhg−1 at 200 mAg−1 current density with cycling stability and retention capacity rate of 91 % for more than 140 cycles.</description><identifier>ISSN: 1385-8947</identifier><identifier>DOI: 10.1016/j.cej.2024.154634</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Lithium–sulfur battery ; Metal organic framework ; Polysulfides interaction ; Reduced graphene oxide ; Zeolite imidazole framework</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2024-10, Vol.497, p.154634, Article 154634</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-2f5c2ea457f90798338aa923e7edc80cc8cf8dbcc05d18ce8f6b235964f6c0373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cyril Karima, Neema</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><creatorcontrib>Mook Choi, Sung</creatorcontrib><creatorcontrib>Jenerali Nyamtara, Kelvin</creatorcontrib><creatorcontrib>Maldonado Nogales, Paul</creatorcontrib><creatorcontrib>Cuong Nguyen, Manh</creatorcontrib><creatorcontrib>Hoon Kim, Sung</creatorcontrib><creatorcontrib>Nam Lim, Sung</creatorcontrib><creatorcontrib>Jeong, Soon-Ki</creatorcontrib><creatorcontrib>Kim, Hyun-Kyung</creatorcontrib><creatorcontrib>Ho Seo, Min</creatorcontrib><creatorcontrib>Ahn, Wook</creatorcontrib><title>Interaction mechanism between MOF derived cobalt/rGO composite and sulfur for long cycle life of lithium–sulfur batteries</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>[Display omitted] •MOF-carbon sponge created additional space within the composite.•The sulfur-infiltrated N-Co-C composite presented relatively low Co-O content with the highest content of C=O, indicating cobalt reduction and the catalytic reaction of cobalt and sulfur, which facilitated the interaction of cobalt with lithium polysulfides, suppressed shuttle effect, and increased electric charge.•Stronger binding energies for GNS with hydroxyl and ether functionalization accelerate strong S8 adsorption and strain impact of Co13 NP further restrict the shuttling action.•The S coated N-Co-C layer enhanced good electrochemical performance due to adsorption of S8 on GNS. Within the ever-growing family of lithium batteries, lithium–sulfur batteries (LSB) have gained significant commercial concern owing to the impressive specific theoretical capacity of 1675 mAhg−1. Despite possessing a higher theoretical specific capacity, lithium-sulfur batteries (LSBs) face practical challenges due to the mobility of dissolved polysulfide intermediates, shuttle effect and the insulating properties of sulfur. These factors result in limited utilization of active material and rapid capacity deterioration. To minimize these problems, we designed a sponge cobalt wrapped in reduced graphene oxide (rGO) cathode material to enable effective polysulfide immobilization. The sponge cobalt nanoparticles from the ZIF 67 metal organic framework wrapped in rGO nanosheets increase the amount of space inside the carbon sponge; thus, has the significance for containing large amount of sulfur. The high affinity of cobalt for lithium polysulfide enabled robust lithium polysulfide adsorption against shuttling effects. The bonding between the cobalt and carbon functional groups captures lithium polysulfides on the composite surface, preventing their dissolution in the electrolyte. The cohabitation of sulfur and cobalt on rGO accelerated electron transfer rate for the transformation of sulfur, leading to efficient suppression of shuttle effect and steady sulfur electrochemistry. The sponge sulfur-infiltrated cobalt nanoparticles into rGO sheets exhibit a discharge capacity of 1176 mAhg−1 at 200 mAg−1 current density with cycling stability and retention capacity rate of 91 % for more than 140 cycles.</description><subject>Lithium–sulfur battery</subject><subject>Metal organic framework</subject><subject>Polysulfides interaction</subject><subject>Reduced graphene oxide</subject><subject>Zeolite imidazole framework</subject><issn>1385-8947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhrMAiVI4ADtfIKkd5-GIFapoqVTUDawtZzymjvKobLeoYsMduCEnIVW7ZvXPYr5_Rl8UPTCaMMqKWZMANklK0yxheVbw7CqaMC7yWFRZeRPdet9QSouKVZPoa9UHdAqCHXrSIWxVb31HagyfiD153SyIRmcPqAkMtWrDzC0349jtBm8DEtVr4vet2TtiBkfaof8gcIQWSWsNksGMGbZ23_1-_1z2ahXGkxb9XXRtVOvx_pLT6H3x_DZ_ideb5Wr-tI6BlVWIU5NDiirLS1PRshKcC6WqlGOJGgQFEGCErgForpkAFKaoU55XRWYKoLzk04ide8EN3js0cudsp9xRMipPxmQjR2PyZEyejY3M45nB8bGDRSc9WOwBtXUIQerB_kP_ASbfeZs</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Cyril Karima, Neema</creator><creator>Jin, Song</creator><creator>Mook Choi, Sung</creator><creator>Jenerali Nyamtara, Kelvin</creator><creator>Maldonado Nogales, Paul</creator><creator>Cuong Nguyen, Manh</creator><creator>Hoon Kim, Sung</creator><creator>Nam Lim, Sung</creator><creator>Jeong, Soon-Ki</creator><creator>Kim, Hyun-Kyung</creator><creator>Ho Seo, Min</creator><creator>Ahn, Wook</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Interaction mechanism between MOF derived cobalt/rGO composite and sulfur for long cycle life of lithium–sulfur batteries</title><author>Cyril Karima, Neema ; Jin, Song ; Mook Choi, Sung ; Jenerali Nyamtara, Kelvin ; Maldonado Nogales, Paul ; Cuong Nguyen, Manh ; Hoon Kim, Sung ; Nam Lim, Sung ; Jeong, Soon-Ki ; Kim, Hyun-Kyung ; Ho Seo, Min ; Ahn, Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-2f5c2ea457f90798338aa923e7edc80cc8cf8dbcc05d18ce8f6b235964f6c0373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Lithium–sulfur battery</topic><topic>Metal organic framework</topic><topic>Polysulfides interaction</topic><topic>Reduced graphene oxide</topic><topic>Zeolite imidazole framework</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cyril Karima, Neema</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><creatorcontrib>Mook Choi, Sung</creatorcontrib><creatorcontrib>Jenerali Nyamtara, Kelvin</creatorcontrib><creatorcontrib>Maldonado Nogales, Paul</creatorcontrib><creatorcontrib>Cuong Nguyen, Manh</creatorcontrib><creatorcontrib>Hoon Kim, Sung</creatorcontrib><creatorcontrib>Nam Lim, Sung</creatorcontrib><creatorcontrib>Jeong, Soon-Ki</creatorcontrib><creatorcontrib>Kim, Hyun-Kyung</creatorcontrib><creatorcontrib>Ho Seo, Min</creatorcontrib><creatorcontrib>Ahn, Wook</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cyril Karima, Neema</au><au>Jin, Song</au><au>Mook Choi, Sung</au><au>Jenerali Nyamtara, Kelvin</au><au>Maldonado Nogales, Paul</au><au>Cuong Nguyen, Manh</au><au>Hoon Kim, Sung</au><au>Nam Lim, Sung</au><au>Jeong, Soon-Ki</au><au>Kim, Hyun-Kyung</au><au>Ho Seo, Min</au><au>Ahn, Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction mechanism between MOF derived cobalt/rGO composite and sulfur for long cycle life of lithium–sulfur batteries</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>497</volume><spage>154634</spage><pages>154634-</pages><artnum>154634</artnum><issn>1385-8947</issn><abstract>[Display omitted] •MOF-carbon sponge created additional space within the composite.•The sulfur-infiltrated N-Co-C composite presented relatively low Co-O content with the highest content of C=O, indicating cobalt reduction and the catalytic reaction of cobalt and sulfur, which facilitated the interaction of cobalt with lithium polysulfides, suppressed shuttle effect, and increased electric charge.•Stronger binding energies for GNS with hydroxyl and ether functionalization accelerate strong S8 adsorption and strain impact of Co13 NP further restrict the shuttling action.•The S coated N-Co-C layer enhanced good electrochemical performance due to adsorption of S8 on GNS. Within the ever-growing family of lithium batteries, lithium–sulfur batteries (LSB) have gained significant commercial concern owing to the impressive specific theoretical capacity of 1675 mAhg−1. Despite possessing a higher theoretical specific capacity, lithium-sulfur batteries (LSBs) face practical challenges due to the mobility of dissolved polysulfide intermediates, shuttle effect and the insulating properties of sulfur. These factors result in limited utilization of active material and rapid capacity deterioration. To minimize these problems, we designed a sponge cobalt wrapped in reduced graphene oxide (rGO) cathode material to enable effective polysulfide immobilization. The sponge cobalt nanoparticles from the ZIF 67 metal organic framework wrapped in rGO nanosheets increase the amount of space inside the carbon sponge; thus, has the significance for containing large amount of sulfur. The high affinity of cobalt for lithium polysulfide enabled robust lithium polysulfide adsorption against shuttling effects. The bonding between the cobalt and carbon functional groups captures lithium polysulfides on the composite surface, preventing their dissolution in the electrolyte. The cohabitation of sulfur and cobalt on rGO accelerated electron transfer rate for the transformation of sulfur, leading to efficient suppression of shuttle effect and steady sulfur electrochemistry. The sponge sulfur-infiltrated cobalt nanoparticles into rGO sheets exhibit a discharge capacity of 1176 mAhg−1 at 200 mAg−1 current density with cycling stability and retention capacity rate of 91 % for more than 140 cycles.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2024.154634</doi></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2024-10, Vol.497, p.154634, Article 154634
issn 1385-8947
language eng
recordid cdi_crossref_primary_10_1016_j_cej_2024_154634
source ScienceDirect Freedom Collection 2022-2024
subjects Lithium–sulfur battery
Metal organic framework
Polysulfides interaction
Reduced graphene oxide
Zeolite imidazole framework
title Interaction mechanism between MOF derived cobalt/rGO composite and sulfur for long cycle life of lithium–sulfur batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20mechanism%20between%20MOF%20derived%20cobalt/rGO%20composite%20and%20sulfur%20for%20long%20cycle%20life%20of%20lithium%E2%80%93sulfur%20batteries&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Cyril%20Karima,%20Neema&rft.date=2024-10-01&rft.volume=497&rft.spage=154634&rft.pages=154634-&rft.artnum=154634&rft.issn=1385-8947&rft_id=info:doi/10.1016/j.cej.2024.154634&rft_dat=%3Celsevier_cross%3ES1385894724061254%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-2f5c2ea457f90798338aa923e7edc80cc8cf8dbcc05d18ce8f6b235964f6c0373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true