Loading…
The role of particle size on the performance of pumice as a supplementary cementitious material
A critical area overlooked in previous research on pumice is understanding how its physical characteristics influence its behavior as a supplementary cementitious material (SCM). This study investigated three pumices with different particle size distributions to observe whether these porous material...
Saved in:
Published in: | Cement & concrete composites 2017-07, Vol.80, p.135-142 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A critical area overlooked in previous research on pumice is understanding how its physical characteristics influence its behavior as a supplementary cementitious material (SCM). This study investigated three pumices with different particle size distributions to observe whether these porous materials exhibit enhanced nucleation and growth of hydration products, in the same way as non-porous materials, and whether the rate of pozzolanic reaction can be changed through particle size. The effect of particle size on compressive strength, rheology and resistance to alkali silica reaction (ASR) was also evaluated. Results showed that reducing particle size increased the rates of cement hydration, pozzolanic reaction, and compressive strength gain, while also increasing mixture viscosity. Interestingly, particle size did not impact the yield stress of the mixture or the resistance to ASR. These new findings give insight about how the particle size of pumice can be used to overcome drawbacks reported in previous literature. |
---|---|
ISSN: | 0958-9465 1873-393X |
DOI: | 10.1016/j.cemconcomp.2017.03.009 |