Loading…
Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction
Mechanical properties of engineered cementitious composites (ECC) are highly dependent on the pore structural characteristics and fibre-matrix interaction. The relationship between them has not been extensively explored. This paper proposes a practical micromechanical analytical model accounting for...
Saved in:
Published in: | Cement & concrete composites 2022-11, Vol.134, p.104770, Article 104770 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853 |
container_end_page | |
container_issue | |
container_start_page | 104770 |
container_title | Cement & concrete composites |
container_volume | 134 |
creator | Zhu, Binrong Pan, Jinlong Zhang, Mingzhong Leung, Christopher K.Y. |
description | Mechanical properties of engineered cementitious composites (ECC) are highly dependent on the pore structural characteristics and fibre-matrix interaction. The relationship between them has not been extensively explored. This paper proposes a practical micromechanical analytical model accounting for pore structure characteristics and crack-bridging properties to predict the strain-hardening and multiple microcracking behaviour of ECC. Using polyethylene fibre reinforced ECC (PE-ECC) as an example, Monte Carlo simulations were undertaken to investigate the tensile behaviour in terms of crack strength, fibre bridging strength and uniaxial tensile properties against heterogeneity of material property, which were validated with experimental data. A parametric study was then conducted to estimate the effects of fibre-matrix bond and fibre properties on stress-strain relationship and microcracking features of PE-ECC. Results indicate that the tensile properties of PE-ECC can be reasonably predicted. Under constant fibre dosages, the tensile ductility of PE-ECC is dominated by interfacial bond, followed by fibre location, orientation and diameter. Such insights are helpful to the design of ECC composites for practical applications. |
doi_str_mv | 10.1016/j.cemconcomp.2022.104770 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cemconcomp_2022_104770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958946522003638</els_id><sourcerecordid>S0958946522003638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwB18gxXHi2FlCxZ9UCRYgsbMce9K4auzKdhE9CPfFoUgsWY1mpPfmvQ8hXJJFScrmerPQMGrvtB93C0oozeeac3KCZqXgVVG11fspmpGWiaKtG3aOLmLcEEKamtMZ-noJYKxO1q1xGgDHFJR1xaCCATcdOxjUh_X7gH2Pd357gDQctuAA97YLgANY1_ugwWBwa-sAsiHOmcAlm7Iw4imajzZBxEprv3c_37LoaFGMKgX7ia1LEFSO4t0lOuvVNsLV75yjt_u71-VjsXp-eFrerApdNSIVwBive6aa2nScUANUtRlKn9tpQXRLc8falJoJqhTXuq5oXhthuOpYKVg1R-Loq4OPMUAvd8GOKhxkSeSEV27kH1454ZVHvFl6e5RCzvdhIcioLbjMwQbQSRpv_zf5Bu2MjjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Zhu, Binrong ; Pan, Jinlong ; Zhang, Mingzhong ; Leung, Christopher K.Y.</creator><creatorcontrib>Zhu, Binrong ; Pan, Jinlong ; Zhang, Mingzhong ; Leung, Christopher K.Y.</creatorcontrib><description>Mechanical properties of engineered cementitious composites (ECC) are highly dependent on the pore structural characteristics and fibre-matrix interaction. The relationship between them has not been extensively explored. This paper proposes a practical micromechanical analytical model accounting for pore structure characteristics and crack-bridging properties to predict the strain-hardening and multiple microcracking behaviour of ECC. Using polyethylene fibre reinforced ECC (PE-ECC) as an example, Monte Carlo simulations were undertaken to investigate the tensile behaviour in terms of crack strength, fibre bridging strength and uniaxial tensile properties against heterogeneity of material property, which were validated with experimental data. A parametric study was then conducted to estimate the effects of fibre-matrix bond and fibre properties on stress-strain relationship and microcracking features of PE-ECC. Results indicate that the tensile properties of PE-ECC can be reasonably predicted. Under constant fibre dosages, the tensile ductility of PE-ECC is dominated by interfacial bond, followed by fibre location, orientation and diameter. Such insights are helpful to the design of ECC composites for practical applications.</description><identifier>ISSN: 0958-9465</identifier><identifier>EISSN: 1873-393X</identifier><identifier>DOI: 10.1016/j.cemconcomp.2022.104770</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fibre pull-out ; Fibre-matrix bond ; Micromechanics-based design ; Microstructure ; Strain-hardening cementitious composites ; Tensile behaviour</subject><ispartof>Cement & concrete composites, 2022-11, Vol.134, p.104770, Article 104770</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853</citedby><cites>FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853</cites><orcidid>0000-0002-9315-5209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zhu, Binrong</creatorcontrib><creatorcontrib>Pan, Jinlong</creatorcontrib><creatorcontrib>Zhang, Mingzhong</creatorcontrib><creatorcontrib>Leung, Christopher K.Y.</creatorcontrib><title>Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction</title><title>Cement & concrete composites</title><description>Mechanical properties of engineered cementitious composites (ECC) are highly dependent on the pore structural characteristics and fibre-matrix interaction. The relationship between them has not been extensively explored. This paper proposes a practical micromechanical analytical model accounting for pore structure characteristics and crack-bridging properties to predict the strain-hardening and multiple microcracking behaviour of ECC. Using polyethylene fibre reinforced ECC (PE-ECC) as an example, Monte Carlo simulations were undertaken to investigate the tensile behaviour in terms of crack strength, fibre bridging strength and uniaxial tensile properties against heterogeneity of material property, which were validated with experimental data. A parametric study was then conducted to estimate the effects of fibre-matrix bond and fibre properties on stress-strain relationship and microcracking features of PE-ECC. Results indicate that the tensile properties of PE-ECC can be reasonably predicted. Under constant fibre dosages, the tensile ductility of PE-ECC is dominated by interfacial bond, followed by fibre location, orientation and diameter. Such insights are helpful to the design of ECC composites for practical applications.</description><subject>Fibre pull-out</subject><subject>Fibre-matrix bond</subject><subject>Micromechanics-based design</subject><subject>Microstructure</subject><subject>Strain-hardening cementitious composites</subject><subject>Tensile behaviour</subject><issn>0958-9465</issn><issn>1873-393X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwB18gxXHi2FlCxZ9UCRYgsbMce9K4auzKdhE9CPfFoUgsWY1mpPfmvQ8hXJJFScrmerPQMGrvtB93C0oozeeac3KCZqXgVVG11fspmpGWiaKtG3aOLmLcEEKamtMZ-noJYKxO1q1xGgDHFJR1xaCCATcdOxjUh_X7gH2Pd357gDQctuAA97YLgANY1_ugwWBwa-sAsiHOmcAlm7Iw4imajzZBxEprv3c_37LoaFGMKgX7ia1LEFSO4t0lOuvVNsLV75yjt_u71-VjsXp-eFrerApdNSIVwBive6aa2nScUANUtRlKn9tpQXRLc8falJoJqhTXuq5oXhthuOpYKVg1R-Loq4OPMUAvd8GOKhxkSeSEV27kH1454ZVHvFl6e5RCzvdhIcioLbjMwQbQSRpv_zf5Bu2MjjQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Zhu, Binrong</creator><creator>Pan, Jinlong</creator><creator>Zhang, Mingzhong</creator><creator>Leung, Christopher K.Y.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9315-5209</orcidid></search><sort><creationdate>202211</creationdate><title>Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction</title><author>Zhu, Binrong ; Pan, Jinlong ; Zhang, Mingzhong ; Leung, Christopher K.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fibre pull-out</topic><topic>Fibre-matrix bond</topic><topic>Micromechanics-based design</topic><topic>Microstructure</topic><topic>Strain-hardening cementitious composites</topic><topic>Tensile behaviour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Binrong</creatorcontrib><creatorcontrib>Pan, Jinlong</creatorcontrib><creatorcontrib>Zhang, Mingzhong</creatorcontrib><creatorcontrib>Leung, Christopher K.Y.</creatorcontrib><collection>CrossRef</collection><jtitle>Cement & concrete composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Binrong</au><au>Pan, Jinlong</au><au>Zhang, Mingzhong</au><au>Leung, Christopher K.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction</atitle><jtitle>Cement & concrete composites</jtitle><date>2022-11</date><risdate>2022</risdate><volume>134</volume><spage>104770</spage><pages>104770-</pages><artnum>104770</artnum><issn>0958-9465</issn><eissn>1873-393X</eissn><abstract>Mechanical properties of engineered cementitious composites (ECC) are highly dependent on the pore structural characteristics and fibre-matrix interaction. The relationship between them has not been extensively explored. This paper proposes a practical micromechanical analytical model accounting for pore structure characteristics and crack-bridging properties to predict the strain-hardening and multiple microcracking behaviour of ECC. Using polyethylene fibre reinforced ECC (PE-ECC) as an example, Monte Carlo simulations were undertaken to investigate the tensile behaviour in terms of crack strength, fibre bridging strength and uniaxial tensile properties against heterogeneity of material property, which were validated with experimental data. A parametric study was then conducted to estimate the effects of fibre-matrix bond and fibre properties on stress-strain relationship and microcracking features of PE-ECC. Results indicate that the tensile properties of PE-ECC can be reasonably predicted. Under constant fibre dosages, the tensile ductility of PE-ECC is dominated by interfacial bond, followed by fibre location, orientation and diameter. Such insights are helpful to the design of ECC composites for practical applications.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cemconcomp.2022.104770</doi><orcidid>https://orcid.org/0000-0002-9315-5209</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0958-9465 |
ispartof | Cement & concrete composites, 2022-11, Vol.134, p.104770, Article 104770 |
issn | 0958-9465 1873-393X |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cemconcomp_2022_104770 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Fibre pull-out Fibre-matrix bond Micromechanics-based design Microstructure Strain-hardening cementitious composites Tensile behaviour |
title | Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20strain-hardening%20behaviour%20of%20polyethylene%20fibre%20reinforced%20engineered%20cementitious%20composites%20accounting%20for%20fibre-matrix%20interaction&rft.jtitle=Cement%20&%20concrete%20composites&rft.au=Zhu,%20Binrong&rft.date=2022-11&rft.volume=134&rft.spage=104770&rft.pages=104770-&rft.artnum=104770&rft.issn=0958-9465&rft.eissn=1873-393X&rft_id=info:doi/10.1016/j.cemconcomp.2022.104770&rft_dat=%3Celsevier_cross%3ES0958946522003638%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |