Loading…

Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction

Mechanical properties of engineered cementitious composites (ECC) are highly dependent on the pore structural characteristics and fibre-matrix interaction. The relationship between them has not been extensively explored. This paper proposes a practical micromechanical analytical model accounting for...

Full description

Saved in:
Bibliographic Details
Published in:Cement & concrete composites 2022-11, Vol.134, p.104770, Article 104770
Main Authors: Zhu, Binrong, Pan, Jinlong, Zhang, Mingzhong, Leung, Christopher K.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853
cites cdi_FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853
container_end_page
container_issue
container_start_page 104770
container_title Cement & concrete composites
container_volume 134
creator Zhu, Binrong
Pan, Jinlong
Zhang, Mingzhong
Leung, Christopher K.Y.
description Mechanical properties of engineered cementitious composites (ECC) are highly dependent on the pore structural characteristics and fibre-matrix interaction. The relationship between them has not been extensively explored. This paper proposes a practical micromechanical analytical model accounting for pore structure characteristics and crack-bridging properties to predict the strain-hardening and multiple microcracking behaviour of ECC. Using polyethylene fibre reinforced ECC (PE-ECC) as an example, Monte Carlo simulations were undertaken to investigate the tensile behaviour in terms of crack strength, fibre bridging strength and uniaxial tensile properties against heterogeneity of material property, which were validated with experimental data. A parametric study was then conducted to estimate the effects of fibre-matrix bond and fibre properties on stress-strain relationship and microcracking features of PE-ECC. Results indicate that the tensile properties of PE-ECC can be reasonably predicted. Under constant fibre dosages, the tensile ductility of PE-ECC is dominated by interfacial bond, followed by fibre location, orientation and diameter. Such insights are helpful to the design of ECC composites for practical applications.
doi_str_mv 10.1016/j.cemconcomp.2022.104770
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cemconcomp_2022_104770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958946522003638</els_id><sourcerecordid>S0958946522003638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwB18gxXHi2FlCxZ9UCRYgsbMce9K4auzKdhE9CPfFoUgsWY1mpPfmvQ8hXJJFScrmerPQMGrvtB93C0oozeeac3KCZqXgVVG11fspmpGWiaKtG3aOLmLcEEKamtMZ-noJYKxO1q1xGgDHFJR1xaCCATcdOxjUh_X7gH2Pd357gDQctuAA97YLgANY1_ugwWBwa-sAsiHOmcAlm7Iw4imajzZBxEprv3c_37LoaFGMKgX7ia1LEFSO4t0lOuvVNsLV75yjt_u71-VjsXp-eFrerApdNSIVwBive6aa2nScUANUtRlKn9tpQXRLc8falJoJqhTXuq5oXhthuOpYKVg1R-Loq4OPMUAvd8GOKhxkSeSEV27kH1454ZVHvFl6e5RCzvdhIcioLbjMwQbQSRpv_zf5Bu2MjjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Zhu, Binrong ; Pan, Jinlong ; Zhang, Mingzhong ; Leung, Christopher K.Y.</creator><creatorcontrib>Zhu, Binrong ; Pan, Jinlong ; Zhang, Mingzhong ; Leung, Christopher K.Y.</creatorcontrib><description>Mechanical properties of engineered cementitious composites (ECC) are highly dependent on the pore structural characteristics and fibre-matrix interaction. The relationship between them has not been extensively explored. This paper proposes a practical micromechanical analytical model accounting for pore structure characteristics and crack-bridging properties to predict the strain-hardening and multiple microcracking behaviour of ECC. Using polyethylene fibre reinforced ECC (PE-ECC) as an example, Monte Carlo simulations were undertaken to investigate the tensile behaviour in terms of crack strength, fibre bridging strength and uniaxial tensile properties against heterogeneity of material property, which were validated with experimental data. A parametric study was then conducted to estimate the effects of fibre-matrix bond and fibre properties on stress-strain relationship and microcracking features of PE-ECC. Results indicate that the tensile properties of PE-ECC can be reasonably predicted. Under constant fibre dosages, the tensile ductility of PE-ECC is dominated by interfacial bond, followed by fibre location, orientation and diameter. Such insights are helpful to the design of ECC composites for practical applications.</description><identifier>ISSN: 0958-9465</identifier><identifier>EISSN: 1873-393X</identifier><identifier>DOI: 10.1016/j.cemconcomp.2022.104770</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fibre pull-out ; Fibre-matrix bond ; Micromechanics-based design ; Microstructure ; Strain-hardening cementitious composites ; Tensile behaviour</subject><ispartof>Cement &amp; concrete composites, 2022-11, Vol.134, p.104770, Article 104770</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853</citedby><cites>FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853</cites><orcidid>0000-0002-9315-5209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zhu, Binrong</creatorcontrib><creatorcontrib>Pan, Jinlong</creatorcontrib><creatorcontrib>Zhang, Mingzhong</creatorcontrib><creatorcontrib>Leung, Christopher K.Y.</creatorcontrib><title>Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction</title><title>Cement &amp; concrete composites</title><description>Mechanical properties of engineered cementitious composites (ECC) are highly dependent on the pore structural characteristics and fibre-matrix interaction. The relationship between them has not been extensively explored. This paper proposes a practical micromechanical analytical model accounting for pore structure characteristics and crack-bridging properties to predict the strain-hardening and multiple microcracking behaviour of ECC. Using polyethylene fibre reinforced ECC (PE-ECC) as an example, Monte Carlo simulations were undertaken to investigate the tensile behaviour in terms of crack strength, fibre bridging strength and uniaxial tensile properties against heterogeneity of material property, which were validated with experimental data. A parametric study was then conducted to estimate the effects of fibre-matrix bond and fibre properties on stress-strain relationship and microcracking features of PE-ECC. Results indicate that the tensile properties of PE-ECC can be reasonably predicted. Under constant fibre dosages, the tensile ductility of PE-ECC is dominated by interfacial bond, followed by fibre location, orientation and diameter. Such insights are helpful to the design of ECC composites for practical applications.</description><subject>Fibre pull-out</subject><subject>Fibre-matrix bond</subject><subject>Micromechanics-based design</subject><subject>Microstructure</subject><subject>Strain-hardening cementitious composites</subject><subject>Tensile behaviour</subject><issn>0958-9465</issn><issn>1873-393X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwB18gxXHi2FlCxZ9UCRYgsbMce9K4auzKdhE9CPfFoUgsWY1mpPfmvQ8hXJJFScrmerPQMGrvtB93C0oozeeac3KCZqXgVVG11fspmpGWiaKtG3aOLmLcEEKamtMZ-noJYKxO1q1xGgDHFJR1xaCCATcdOxjUh_X7gH2Pd357gDQctuAA97YLgANY1_ugwWBwa-sAsiHOmcAlm7Iw4imajzZBxEprv3c_37LoaFGMKgX7ia1LEFSO4t0lOuvVNsLV75yjt_u71-VjsXp-eFrerApdNSIVwBive6aa2nScUANUtRlKn9tpQXRLc8falJoJqhTXuq5oXhthuOpYKVg1R-Loq4OPMUAvd8GOKhxkSeSEV27kH1454ZVHvFl6e5RCzvdhIcioLbjMwQbQSRpv_zf5Bu2MjjQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Zhu, Binrong</creator><creator>Pan, Jinlong</creator><creator>Zhang, Mingzhong</creator><creator>Leung, Christopher K.Y.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9315-5209</orcidid></search><sort><creationdate>202211</creationdate><title>Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction</title><author>Zhu, Binrong ; Pan, Jinlong ; Zhang, Mingzhong ; Leung, Christopher K.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fibre pull-out</topic><topic>Fibre-matrix bond</topic><topic>Micromechanics-based design</topic><topic>Microstructure</topic><topic>Strain-hardening cementitious composites</topic><topic>Tensile behaviour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Binrong</creatorcontrib><creatorcontrib>Pan, Jinlong</creatorcontrib><creatorcontrib>Zhang, Mingzhong</creatorcontrib><creatorcontrib>Leung, Christopher K.Y.</creatorcontrib><collection>CrossRef</collection><jtitle>Cement &amp; concrete composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Binrong</au><au>Pan, Jinlong</au><au>Zhang, Mingzhong</au><au>Leung, Christopher K.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction</atitle><jtitle>Cement &amp; concrete composites</jtitle><date>2022-11</date><risdate>2022</risdate><volume>134</volume><spage>104770</spage><pages>104770-</pages><artnum>104770</artnum><issn>0958-9465</issn><eissn>1873-393X</eissn><abstract>Mechanical properties of engineered cementitious composites (ECC) are highly dependent on the pore structural characteristics and fibre-matrix interaction. The relationship between them has not been extensively explored. This paper proposes a practical micromechanical analytical model accounting for pore structure characteristics and crack-bridging properties to predict the strain-hardening and multiple microcracking behaviour of ECC. Using polyethylene fibre reinforced ECC (PE-ECC) as an example, Monte Carlo simulations were undertaken to investigate the tensile behaviour in terms of crack strength, fibre bridging strength and uniaxial tensile properties against heterogeneity of material property, which were validated with experimental data. A parametric study was then conducted to estimate the effects of fibre-matrix bond and fibre properties on stress-strain relationship and microcracking features of PE-ECC. Results indicate that the tensile properties of PE-ECC can be reasonably predicted. Under constant fibre dosages, the tensile ductility of PE-ECC is dominated by interfacial bond, followed by fibre location, orientation and diameter. Such insights are helpful to the design of ECC composites for practical applications.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cemconcomp.2022.104770</doi><orcidid>https://orcid.org/0000-0002-9315-5209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0958-9465
ispartof Cement & concrete composites, 2022-11, Vol.134, p.104770, Article 104770
issn 0958-9465
1873-393X
language eng
recordid cdi_crossref_primary_10_1016_j_cemconcomp_2022_104770
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Fibre pull-out
Fibre-matrix bond
Micromechanics-based design
Microstructure
Strain-hardening cementitious composites
Tensile behaviour
title Predicting the strain-hardening behaviour of polyethylene fibre reinforced engineered cementitious composites accounting for fibre-matrix interaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20strain-hardening%20behaviour%20of%20polyethylene%20fibre%20reinforced%20engineered%20cementitious%20composites%20accounting%20for%20fibre-matrix%20interaction&rft.jtitle=Cement%20&%20concrete%20composites&rft.au=Zhu,%20Binrong&rft.date=2022-11&rft.volume=134&rft.spage=104770&rft.pages=104770-&rft.artnum=104770&rft.issn=0958-9465&rft.eissn=1873-393X&rft_id=info:doi/10.1016/j.cemconcomp.2022.104770&rft_dat=%3Celsevier_cross%3ES0958946522003638%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-e5574f5a64db702de2a9101f000c80c926474d1c582aa7cc4324d168d7ab51853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true