Loading…

Effect of particle size on cement foams

This work attempts to elucidate the foaming kinetics, hierarchical structures, engineering properties and mechanisms of cement foams with high-volume quartz powder (QP) of different fineness from 200 to 2000 meshes. Comprehensive experiments were conducted to measure the fresh slurry properties, foa...

Full description

Saved in:
Bibliographic Details
Published in:Cement & concrete composites 2024-07, Vol.150, p.105548, Article 105548
Main Authors: Zeng, Qiang, Chen, Shan, Wen, Rongjia, Peng, Yu, Wang, Zhendi, Zhao, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-a3d34f94e43ae54cb39cb37784624c9d4bc74153a27faed59f3c366a6994cc183
cites cdi_FETCH-LOGICAL-c318t-a3d34f94e43ae54cb39cb37784624c9d4bc74153a27faed59f3c366a6994cc183
container_end_page
container_issue
container_start_page 105548
container_title Cement & concrete composites
container_volume 150
creator Zeng, Qiang
Chen, Shan
Wen, Rongjia
Peng, Yu
Wang, Zhendi
Zhao, Yang
description This work attempts to elucidate the foaming kinetics, hierarchical structures, engineering properties and mechanisms of cement foams with high-volume quartz powder (QP) of different fineness from 200 to 2000 meshes. Comprehensive experiments were conducted to measure the fresh slurry properties, foaming process, penetration strength, and structure of the foams and skeletons. Foaming kinetics was analyzed using fractional-kinetic (FK), pseudo first-order (PFO) and pseudo second-order (PSO) models. Results show that the increase of QP fineness can, respectively, keep, increase and decrease the pH, viscosity, and flowability. The FK model shows the best fitting goodness of foaming kinetics, and the slurry with the QP fineness of 600 meshes possesses the fastest foaming speed. Fine QP shortens the induction time and exothermic peak time, and improve the collapse strength. Coarse QP induces more small bubbles and severe breakage of skeleton, and coarsen the nanopores. The interrelationships among the experiment outcomes and the mechanisms of colloidal adhesion, nucleation and growth of bubbles and cement hydrates, and microstructure development in skeletons are profoundly discussed. The findings deepen the mechanistic understanding of cement foams with different size particles.
doi_str_mv 10.1016/j.cemconcomp.2024.105548
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cemconcomp_2024_105548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958946524001203</els_id><sourcerecordid>S0958946524001203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-a3d34f94e43ae54cb39cb37784624c9d4bc74153a27faed59f3c366a6994cc183</originalsourceid><addsrcrecordid>eNqFj0tLxDAUhYMoOI7-h-xctSbNo8lSh_EBA24U3IXM7Q2kTJshKYL-ejtUcOnicuDC-TgfIZSzmjOu7_oacIA0QhqOdcMaOb-VkuaMrLhpRSWs-DgnK2aVqazU6pJcldIzxrRsmxW53YaAMNEU6NHnKcIBaYnfSNNIZzCOEw3JD-WaXAR_KHjzm2vy_rh92zxXu9enl839rgLBzVR50QkZrEQpPCoJe2Hna1sjdSPBdnIPreRK-KYNHjtlgwChtdfWSgBuxJqYhQs5lZIxuGOOg89fjjN3Ena9-xN2J2G3CM_Vh6WK877PiNkViDgCdjHPiq5L8X_IDxzOYzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of particle size on cement foams</title><source>ScienceDirect Freedom Collection</source><creator>Zeng, Qiang ; Chen, Shan ; Wen, Rongjia ; Peng, Yu ; Wang, Zhendi ; Zhao, Yang</creator><creatorcontrib>Zeng, Qiang ; Chen, Shan ; Wen, Rongjia ; Peng, Yu ; Wang, Zhendi ; Zhao, Yang</creatorcontrib><description>This work attempts to elucidate the foaming kinetics, hierarchical structures, engineering properties and mechanisms of cement foams with high-volume quartz powder (QP) of different fineness from 200 to 2000 meshes. Comprehensive experiments were conducted to measure the fresh slurry properties, foaming process, penetration strength, and structure of the foams and skeletons. Foaming kinetics was analyzed using fractional-kinetic (FK), pseudo first-order (PFO) and pseudo second-order (PSO) models. Results show that the increase of QP fineness can, respectively, keep, increase and decrease the pH, viscosity, and flowability. The FK model shows the best fitting goodness of foaming kinetics, and the slurry with the QP fineness of 600 meshes possesses the fastest foaming speed. Fine QP shortens the induction time and exothermic peak time, and improve the collapse strength. Coarse QP induces more small bubbles and severe breakage of skeleton, and coarsen the nanopores. The interrelationships among the experiment outcomes and the mechanisms of colloidal adhesion, nucleation and growth of bubbles and cement hydrates, and microstructure development in skeletons are profoundly discussed. The findings deepen the mechanistic understanding of cement foams with different size particles.</description><identifier>ISSN: 0958-9465</identifier><identifier>EISSN: 1873-393X</identifier><identifier>DOI: 10.1016/j.cemconcomp.2024.105548</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Foam ; Kinetics ; Microstructure ; Particle size</subject><ispartof>Cement &amp; concrete composites, 2024-07, Vol.150, p.105548, Article 105548</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-a3d34f94e43ae54cb39cb37784624c9d4bc74153a27faed59f3c366a6994cc183</citedby><cites>FETCH-LOGICAL-c318t-a3d34f94e43ae54cb39cb37784624c9d4bc74153a27faed59f3c366a6994cc183</cites><orcidid>0000-0003-1720-4766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeng, Qiang</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><creatorcontrib>Wen, Rongjia</creatorcontrib><creatorcontrib>Peng, Yu</creatorcontrib><creatorcontrib>Wang, Zhendi</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><title>Effect of particle size on cement foams</title><title>Cement &amp; concrete composites</title><description>This work attempts to elucidate the foaming kinetics, hierarchical structures, engineering properties and mechanisms of cement foams with high-volume quartz powder (QP) of different fineness from 200 to 2000 meshes. Comprehensive experiments were conducted to measure the fresh slurry properties, foaming process, penetration strength, and structure of the foams and skeletons. Foaming kinetics was analyzed using fractional-kinetic (FK), pseudo first-order (PFO) and pseudo second-order (PSO) models. Results show that the increase of QP fineness can, respectively, keep, increase and decrease the pH, viscosity, and flowability. The FK model shows the best fitting goodness of foaming kinetics, and the slurry with the QP fineness of 600 meshes possesses the fastest foaming speed. Fine QP shortens the induction time and exothermic peak time, and improve the collapse strength. Coarse QP induces more small bubbles and severe breakage of skeleton, and coarsen the nanopores. The interrelationships among the experiment outcomes and the mechanisms of colloidal adhesion, nucleation and growth of bubbles and cement hydrates, and microstructure development in skeletons are profoundly discussed. The findings deepen the mechanistic understanding of cement foams with different size particles.</description><subject>Foam</subject><subject>Kinetics</subject><subject>Microstructure</subject><subject>Particle size</subject><issn>0958-9465</issn><issn>1873-393X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFj0tLxDAUhYMoOI7-h-xctSbNo8lSh_EBA24U3IXM7Q2kTJshKYL-ejtUcOnicuDC-TgfIZSzmjOu7_oacIA0QhqOdcMaOb-VkuaMrLhpRSWs-DgnK2aVqazU6pJcldIzxrRsmxW53YaAMNEU6NHnKcIBaYnfSNNIZzCOEw3JD-WaXAR_KHjzm2vy_rh92zxXu9enl839rgLBzVR50QkZrEQpPCoJe2Hna1sjdSPBdnIPreRK-KYNHjtlgwChtdfWSgBuxJqYhQs5lZIxuGOOg89fjjN3Ena9-xN2J2G3CM_Vh6WK877PiNkViDgCdjHPiq5L8X_IDxzOYzw</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Zeng, Qiang</creator><creator>Chen, Shan</creator><creator>Wen, Rongjia</creator><creator>Peng, Yu</creator><creator>Wang, Zhendi</creator><creator>Zhao, Yang</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1720-4766</orcidid></search><sort><creationdate>202407</creationdate><title>Effect of particle size on cement foams</title><author>Zeng, Qiang ; Chen, Shan ; Wen, Rongjia ; Peng, Yu ; Wang, Zhendi ; Zhao, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-a3d34f94e43ae54cb39cb37784624c9d4bc74153a27faed59f3c366a6994cc183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Foam</topic><topic>Kinetics</topic><topic>Microstructure</topic><topic>Particle size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Qiang</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><creatorcontrib>Wen, Rongjia</creatorcontrib><creatorcontrib>Peng, Yu</creatorcontrib><creatorcontrib>Wang, Zhendi</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><collection>CrossRef</collection><jtitle>Cement &amp; concrete composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Qiang</au><au>Chen, Shan</au><au>Wen, Rongjia</au><au>Peng, Yu</au><au>Wang, Zhendi</au><au>Zhao, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of particle size on cement foams</atitle><jtitle>Cement &amp; concrete composites</jtitle><date>2024-07</date><risdate>2024</risdate><volume>150</volume><spage>105548</spage><pages>105548-</pages><artnum>105548</artnum><issn>0958-9465</issn><eissn>1873-393X</eissn><abstract>This work attempts to elucidate the foaming kinetics, hierarchical structures, engineering properties and mechanisms of cement foams with high-volume quartz powder (QP) of different fineness from 200 to 2000 meshes. Comprehensive experiments were conducted to measure the fresh slurry properties, foaming process, penetration strength, and structure of the foams and skeletons. Foaming kinetics was analyzed using fractional-kinetic (FK), pseudo first-order (PFO) and pseudo second-order (PSO) models. Results show that the increase of QP fineness can, respectively, keep, increase and decrease the pH, viscosity, and flowability. The FK model shows the best fitting goodness of foaming kinetics, and the slurry with the QP fineness of 600 meshes possesses the fastest foaming speed. Fine QP shortens the induction time and exothermic peak time, and improve the collapse strength. Coarse QP induces more small bubbles and severe breakage of skeleton, and coarsen the nanopores. The interrelationships among the experiment outcomes and the mechanisms of colloidal adhesion, nucleation and growth of bubbles and cement hydrates, and microstructure development in skeletons are profoundly discussed. The findings deepen the mechanistic understanding of cement foams with different size particles.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cemconcomp.2024.105548</doi><orcidid>https://orcid.org/0000-0003-1720-4766</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0958-9465
ispartof Cement & concrete composites, 2024-07, Vol.150, p.105548, Article 105548
issn 0958-9465
1873-393X
language eng
recordid cdi_crossref_primary_10_1016_j_cemconcomp_2024_105548
source ScienceDirect Freedom Collection
subjects Foam
Kinetics
Microstructure
Particle size
title Effect of particle size on cement foams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20particle%20size%20on%20cement%20foams&rft.jtitle=Cement%20&%20concrete%20composites&rft.au=Zeng,%20Qiang&rft.date=2024-07&rft.volume=150&rft.spage=105548&rft.pages=105548-&rft.artnum=105548&rft.issn=0958-9465&rft.eissn=1873-393X&rft_id=info:doi/10.1016/j.cemconcomp.2024.105548&rft_dat=%3Celsevier_cross%3ES0958946524001203%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-a3d34f94e43ae54cb39cb37784624c9d4bc74153a27faed59f3c366a6994cc183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true