Loading…

Nanocomposites based on chalcogenide glass semiconductor and metal phtalocyanine

A novel technique for the fabrication of chalcogenide nanocomposites based on chalcogenide glass (ChGs) and manganese phtalocyanine (MnPc) is presented. The structural and optical characterization of obtained composites in comparison to chalcogenide glass was carried out. Two-component nanocomposite...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2015-07, Vol.41 (6), p.7605-7610
Main Authors: Grynko, D., Stronski, A., Telbiz, G., Lytvyn, O., Paiuk, O., Oleksenko, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel technique for the fabrication of chalcogenide nanocomposites based on chalcogenide glass (ChGs) and manganese phtalocyanine (MnPc) is presented. The structural and optical characterization of obtained composites in comparison to chalcogenide glass was carried out. Two-component nanocomposite films were obtained by simultaneous vacuum co-condensation of the ChGs components and organic dye on the substrate surface. The spatial arrangement of the two evaporators and substrates in a vacuum chamber allowed obtain samples with varied composite ratio. ChGs films optical band gap values were not sufficiently changed with growth rate and films thickness. It was shown that in case of dye concentration reduction for more than three orders specific absorption per dye molecule will be decreased by two orders. At greater concentrations solid solution of dye is clusterized, dye is distinctly aggregated and the absorbance is nearly the same as of the pure dye in the form of thin film. Therefore composite properties changes from cluster solution into molecular solution and thus dye molecule absorbance decrease. Relation of specific dye absorption on composite concentration was explained as electrons exchange with donor and acceptor subsystems and corresponding electron levels population. Sketch of electron density diagrams and corresponding bonds schema for composites are presented.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2015.02.085