Loading…

Reaction coupling preparation of high sintering activity boron carbide nano-powders

Large scale B4C nano-powders were synthesized via a novel ball milling assisted reaction coupling self-propagating high temperature synthesis method using Mg, B2O3 and CH2H3Cl as the starting materials. The XRD, FTIR, Raman, EDX, FSEM, TEM, HRTEM and SAED were used to characterize the B4C samples. T...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2016-05, Vol.42 (6), p.6969-6977
Main Authors: Wang, Jilin, Long, Fei, Wang, Weimin, Mo, Shuyi, Zou, Zhengguang, Fu, Zhengyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large scale B4C nano-powders were synthesized via a novel ball milling assisted reaction coupling self-propagating high temperature synthesis method using Mg, B2O3 and CH2H3Cl as the starting materials. The XRD, FTIR, Raman, EDX, FSEM, TEM, HRTEM and SAED were used to characterize the B4C samples. The optimum endothermic rate was 35%, when the samples presented fine and uniform regular morphology with an average particle diameter of about 100nm. In addition, the reaction coupling principle, possible chemical reaction mechanism and the effects of the endothermic reaction rate were also discussed. Moreover, the commercial B4C (C-B4C) and homemade B4C (H-B4C) ceramics were prepared by spark-plasma sintering method at 1700°C under 30Mpa. Compared with the C-B4C ceramic, the values of relative density, vickers hardness and fracture toughness of the H-B4C ceramic were increased by 2.1%, 9.2% and 20.1%, respectively, demonstrating high sintering activity of the homemade B4C nano-powders.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2016.01.083