Loading…
Three-dimensional (3D) LiMn0.8Fe0.2PO4 nanoflowers assembled from interconnected nanoflakes as cathode materials for lithium ion batteries
Three-dimensional (3D) olivine LiMn0.8Fe0.2PO4 nanoflowers constructed by two-dimensional (2D) nanoflakes have been successfully synthesized through an easy liquid phase method. Hierarchical LiMn0.8Fe0.2PO4/C could be easily formed via a liquid coating technology and subsequent calcination treatment...
Saved in:
Published in: | Ceramics international 2017-02, Vol.43 (3), p.3190-3195 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three-dimensional (3D) olivine LiMn0.8Fe0.2PO4 nanoflowers constructed by two-dimensional (2D) nanoflakes have been successfully synthesized through an easy liquid phase method. Hierarchical LiMn0.8Fe0.2PO4/C could be easily formed via a liquid coating technology and subsequent calcination treatment. When acting as cathode materials for lithium ion batteries, the LiMn0.8Fe0.2PO4/C nanoflowers show excellent rate performance and cycle stability. The unique flower-like hierarchical structured LiMn0.8Fe0.2PO4 and thin carbon coating outside make this composite a promising candidate as cathode materials for lithium ion batteries. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2016.11.141 |