Loading…

Experimental and thermodynamic investigation of gradient zone formation for Ti(C,N)-based cermets sintered in nitrogen atmosphere

The influence of N2 atmosphere on the microstructure of gradient zone in Ti(C,N)-Mo2C-Ni cermet was systematically investigated by the coupling analysis of experimental characterization and thermodynamic calculation. Under the guidance of calculated carbon window, the composition of Ti(C,N)-Mo2C-Ni...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2017-10, Vol.43 (15), p.12089-12094
Main Authors: Zhang, Cong, Yin, Haiqing, Zhang, Ruijie, Jiang, Xue, Liu, Guoquan, Du, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of N2 atmosphere on the microstructure of gradient zone in Ti(C,N)-Mo2C-Ni cermet was systematically investigated by the coupling analysis of experimental characterization and thermodynamic calculation. Under the guidance of calculated carbon window, the composition of Ti(C,N)-Mo2C-Ni cermet was designed, and the cermet was produced via liquid-phase sintering at 1450°C for 2h under N2 pressure of 20, 200, 400 and 600mbar. The microstructure and element distribution of cermet were analyzed by using Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray spectroscopy (EDX). A homogeneous microstructure was obtained for cermet sintered in 20-mbar nitrogen atmosphere, whereas the thickness of gradient layer increased with nitrogen pressure. EDX mapping demonstrate that Mo and Ti are enriched in gradient zone, while Ni is lacking and partially segregated near the surface. The diffusion of elements in cermet is caused by the different nitrogen activity between surface and interior. The carbonitride grains show typical black core and gray rim structure in the bulk of cermets, while it present light-gray core and gray rim in the surface gradient layer. In addition, the Vickers microhardness measurement was performed for the gradient zone of cermets, and the hardness increased for cermets sintered in higher nitrogen pressures, which exhibit slower grain growth phenomena.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2017.06.064