Loading…

A study on the wetting behavior of liquid iron on forsterite, mullite, spinel and quasi-corundum substrates

Wetting characteristics of liquid iron on magnesia, alumina and silica mixture substrates were studied by sessile drop experiments. Chromium-free forsterite, mullite, spinel and quasi-corundum phases were selected as alternative refractories in MgO-Al2O3-SiO2. Morphological changes of molten electro...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2018-10, Vol.44 (15), p.17585-17591
Main Authors: Park, Hyun Sik, Kim, Youngjae, Kim, Sookyung, Yoon, Taehee, Kim, Yelim, Chung, Yongsug
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wetting characteristics of liquid iron on magnesia, alumina and silica mixture substrates were studied by sessile drop experiments. Chromium-free forsterite, mullite, spinel and quasi-corundum phases were selected as alternative refractories in MgO-Al2O3-SiO2. Morphological changes of molten electrolytic iron on the oxide substrates were investigated via apparent contact angle measurements. The results showed that the wetting behavior was significantly influenced by FeO compounds that were formed via oxidation of the liquid iron. Morphologies of the reacted layer were studied by Scanning Electron Microscope (SEM)/EDX analysis. The ternary phases FeO-MgO-SiO2 and FeO-Al2O3-SiO2 improved the wetting of liquid iron on the forsterite and mullite substrates by providing liquid phases at solid (refractory)–liquid (iron) interfaces. However, corrosion by liquid iron was significantly inhibited at spinel phase which did not feature FeO based compounds at the interface. Quasi-corundum (10MgO-25SiO2-65Al2O3) showed a much enhanced resistance to liquid iron compared to forsterite or mullite refractories.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2018.05.226