Loading…
A study on the wetting behavior of liquid iron on forsterite, mullite, spinel and quasi-corundum substrates
Wetting characteristics of liquid iron on magnesia, alumina and silica mixture substrates were studied by sessile drop experiments. Chromium-free forsterite, mullite, spinel and quasi-corundum phases were selected as alternative refractories in MgO-Al2O3-SiO2. Morphological changes of molten electro...
Saved in:
Published in: | Ceramics international 2018-10, Vol.44 (15), p.17585-17591 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wetting characteristics of liquid iron on magnesia, alumina and silica mixture substrates were studied by sessile drop experiments. Chromium-free forsterite, mullite, spinel and quasi-corundum phases were selected as alternative refractories in MgO-Al2O3-SiO2. Morphological changes of molten electrolytic iron on the oxide substrates were investigated via apparent contact angle measurements. The results showed that the wetting behavior was significantly influenced by FeO compounds that were formed via oxidation of the liquid iron. Morphologies of the reacted layer were studied by Scanning Electron Microscope (SEM)/EDX analysis. The ternary phases FeO-MgO-SiO2 and FeO-Al2O3-SiO2 improved the wetting of liquid iron on the forsterite and mullite substrates by providing liquid phases at solid (refractory)–liquid (iron) interfaces. However, corrosion by liquid iron was significantly inhibited at spinel phase which did not feature FeO based compounds at the interface. Quasi-corundum (10MgO-25SiO2-65Al2O3) showed a much enhanced resistance to liquid iron compared to forsterite or mullite refractories. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2018.05.226 |