Loading…

Exploration on the origin of enhanced piezoelectric properties in transition-metal ion doped KNN based lead-free ceramics

In this work, we studied effects of Ni2O3 and Co2O3 doping on crystal structures, microstructures, orthorhombic and tetragonal phase transition temperature (To-t), and electrical properties of [Li0.06(Na0.57K0.43)0.94][Ta0.05(Sb0.06Nb0.94)0.95]O3 (LNKTSN) lead-free ceramics. The experimental results...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2018-10, Vol.44 (14), p.16745-16750
Main Authors: Xu, Fang, Chen, Jian, Lu, Yinmei, Zhang, Qingfeng, Zhang, Qi, Zhou, Taosheng, He, Yunbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we studied effects of Ni2O3 and Co2O3 doping on crystal structures, microstructures, orthorhombic and tetragonal phase transition temperature (To-t), and electrical properties of [Li0.06(Na0.57K0.43)0.94][Ta0.05(Sb0.06Nb0.94)0.95]O3 (LNKTSN) lead-free ceramics. The experimental results showed that the Ni2O3 addition with appropriate amount could shift the To-t downwards to the room temperature, and thus obviously increasing the room-temperature piezoelectric coefficient (d33), dielectric coefficient (εr) and electromechanical coupling coefficient (kp) of the LNKTSN ceramics. These were consistent with previous experimental results obtained in Fe2O3 doped LNKTSN ceramics. On the contrary, Co3+ doping shifted continuously the To-t upward and deteriorated obviously piezoelectric properties of LNKTSN ceramics. Fe, Co and Ni had similar ion radii and were expected to result in the same (donor or acceptor) doping effects on electrical properties of LNKTSN ceramics. The different doping effects between Co3+ (deterioration) and Ni3+ or Fe3+ (improvement) on the electrical properties of LNKTSN ceramics suggested that the coexistence of orthorhombic and tetragonal phases at room temperature due to downward shift of To-t, rather than ion doping (donor or acceptor doping) effects was the main cause for enhanced room-temperature piezoelectric properties. This conclusion can be extended to all KNN-based materials in general, thus offering principle guide for future development of new lead-free materials with good piezoelectric properties.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2018.06.104