Loading…
Influence of pore distribution on the equivalent thermal conductivity of low porosity ceramic closed-cell foams
The microstructures of porous alumina materials with different porosities were established by introducing the departure factor of pore position and acentric factor of pore diameter to describe the distribution of pores in space and in size, respectively. The contribution of radiation and influence o...
Saved in:
Published in: | Ceramics international 2018-11, Vol.44 (16), p.19319-19329 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The microstructures of porous alumina materials with different porosities were established by introducing the departure factor of pore position and acentric factor of pore diameter to describe the distribution of pores in space and in size, respectively. The contribution of radiation and influence of pore distribution on the equivalent thermal conductivity were discussed based on numerical simulations by the finite volume method (FVM) considering both thermal conduction and radiation. When the pore diameter was less than 10 µm, the radiation component was less than 2%, and radiation could be neglected. Radiative heat transfer played a dominant role for materials with high porosity and large pore size at high temperatures. For micro pore materials (1 mm), broad pore distribution decreased the thermal conductivity at low temperatures and increased it at high temperatures. The basic prediction model of effective thermal conductivity for a two-component material, the Maxwell–Eucken model (ME1) and its modified model were corrected by introducing the pore structure factor. The results from experiments prove that the numerical values were satisfactory. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2018.07.160 |